[image: Logo-HPU_WebHeaderONLY][image: 451986331]

AMX Programming Guide 2016

Copyright
AMX by Harman 2016. All rights reserved. No part of this publication may be reproduced, transcribed, stored in a retrieval system or translated into any language in any form by any means without the written permission of AMX.

Credits
Written by College of AMX - Harman Professional University.
For additional questions or suggestions, feel free to contact us.
College of AMX - Harman Professional University
3000 Research Drive
Richardson, TX 75082
Phone 469.624.8000
Fax 469.624.7192

traininghelp@harman.com

*ADD TABLE OF CONTENTS

Introduction
Welcome to AMX programming! This guide, for programmers, technical support personnel, and system integrators, teaches programming skills for AMX control systems using the Netlinx programming language. After reading this guide in its entirety, you should have a fundamental understanding of how a control system is programmed. For the best chance of creating successful Netlinx programs, it is highly recommended you attend an instructor led classroom course in one of many AMX training centers internationally.

To register for classes please visit: http://www.amx.com/training

	
	[image:]
	There are many classes available for all types of Harman products within Harman Professional University.

Setting up a Project in Netlinx Studio
Lesson Topics
· Review of User Interface
· Preferences

Review of User Interface

FIG. 1
NetLinx Studio 4.1 Work Area
Title Bar
Menu Bar
Toolbars
Workspace
Window
Output
Display
Window
Status Bar
Source
Code
Editor
Windows

Preferences Menu
Select Settings > Preferences to open the Preferences dialog, where you can set various application-level preferences
· NetLinx Compiler tab - Contains options to set default preferences for the NetLinx Compiler
· Editor tabs - Contains options to set default preferences for the Source Code Editor windows
· Workspace tab - Contains options to set various display and file preferences relating to the Workspace Window
· General tab - Contains options to set general program defaults
· Terminal – TELNET Windows tab - Contains options to set default Terminal and Telnet window preferences

· File Transfer tab - Contains options to set default preferences for file transfer operations
· Diagnostics tab - Contains options to set default diagnostics preferences
· Online Tree – Zero Config tab - Contains options to set default Online Tree and Zero Config preferences

Setting General Program Preferences

[image:]

Use the options on the General tab of the Preferences dialog to set general program defaults:
· Window Color Display Options - Allows you to define the Foreground and Background Color in each window in the list.
· Output Window Font Selections – Allows you to define what font to use for the Output Window.
· Application Color Scheme – Allows you to change the overall look of the application.
· Recent File List Size - This field allows you to change the size of the recent file list, displayed at the bottom of the File menu (range = 1-9),

Setting NetLinx Compiler Preferences (NetLinx Compiler Tab)
[image:]
Use the options in the NetLinx Compiler tab of the Preferences dialog to set default preferences for the NetLinx compiler. The items in this tab include:
· Compile With Debug Info Select this option to include variable symbol information in the compiled file. This allows the debugger to identify and validate variable symbols in the code. You must compile with debug info in order to debug NetLinx files.
· Build With Source Check to include the executable code and the source code to the Master Controller or data device when the file is sent. This allows the Receive option to retrieve the source code from the Master Controller. If Build with Source is disabled, only the executable code is sent, which cannot be retrieved from the Master Controller.
	
	[image:]
	When building with source, only the files needed for the compilation process are compressed. Though the APW may contain many files, if the source file only uses one AXI file, then only 2 files will be compressed.

· Build with Password Protection — Select this option to apply a password to the Source file. Select the Change button to edit the password (via the Change Password dialog). A password must be at least 6 characters in length (maximum of 20 characters).
· Directories — Click to open the directories menu, where you select the directories to point the compiler to, by file type. Once a directory type is selected, the directory list is populated with the directories of that type that have been mapped. There are a maximum of 100 directories that can be entered for each type.
· Select Include Files to select or create the directory that the compiler will look for Include files in.
· Select Library Files to select or create the directory that the compiler will look for System Call files in.
Setting Editor Preferences (Editor Highlighting and Fonts Tab)
[image:]
Use the options on the Editor Options tabs of the Preferences dialog to set default preferences for the Source Code Editor windows. The items in this tab include:

· Syntax Highlighting - These options allow you to customize syntax highlighting within the Source Code Editor windows.
· Document Type - Select the type of document that you want to set highlighting options for (Text Files or Source Code Files).
· Selections - This is a list of all the items that can be customized in the Source Code Editor Windows. The items that appear in this list depend on the Document Type selection.
· Background Color - This is the background color setting for the selected Item.
· Apply to All - Use this option to apply the selected background color to all items in the Selections list.
· Text Color - This is the text color setting for the selected Item. Click the down arrow to select a different color from a palette.
· Bold/Italic - Use these checkboxes to specify the text style setting for the selected Item.
· Font - The Selection button opens the Font dialog, where you can select the font, font style (regular, italic, bold) and font size to be displayed in the Source Code Editor window.

Setting Editor Preferences (Editor Display and Indentations Tab)
[image:]
Use the options on the Editor Options tabs of the Preferences dialog to set default preferences for the Source Code Editor windows. The items in this tab include:

· Display options — These checkboxes offer more display-oriented options for the Source Code Editor window:
· Show Line Numbers - This option displays line numbers along the left-hand edge of the Source Code Editor window (default = enabled).
· Enable AutoComplete/Suggest - With this option enabled, the application examines the first few characters in a variable name, device name or a reserved identifier, and automatically finishes typing it for you (default = enabled). AutoComplete/Suggest ignores comment text unless "Within Comments" has been checked.
· Enable Indentation Guides - This option causes the program to draw vertical lines indicating the tab stops in the Source Code Editor window (default = enabled).
· Enable Code Folding - This option allows you to "fold-up" each section of code in the Source Code Editor (default = enabled).
· Tabs and Indentation Preferences - This set of options allows you to specify the following indentation preferences:
· Set tab stops every X characters - Use this option to specify the size (in number of characters) of the tab stops in the Source Code Editor window (default = 8).
· Enable Auto-Indentation - This option causes the program to automatically indent lines that occur after an indented line.
· Clear Text Buffer History - Clears all the clipboard text items from the list.
· Font - The Selection button opens the Font dialog, where you can select the font, font style (regular, italic, bold) and font size to be displayed in the Source Code Editor window.
· Clipboard Text Buffer - These options allow you to define the number of clipboard buffer entries and the maximum width to display.
· Max Items - You can have a maximum of 30 clipboard buffer items (default = 20).
· Max Display Width - You can set the maximum display width to up to 80 characters (default = 50).
Setting Workspace Preferences (Workspace Tab)
[image:]
Use the options on the Workspace tab of the Preferences dialog to set various display and file preferences relating to the Workspace Window. The items on this tab include:
· Display Options:
· Restore Workspace on Startup - This option (on by default) automatically restores the workspace file upon startup of the application. With this option enabled, all files that were opened and the dockable windows that were displayed when you closed the application will be restored when you restart the program.
· Display System Configuration Setting in the Identifier - This option (off by default) displays the Master communication settings as part of the System identifier (as displayed in the Workspace tab of the Workspace Window).
· Saving:
· Enable Auto Save - Toggles the timed auto-saving of text files and the duration of time between auto saves.
· Auto Save Every <x> Minutes - This field is only enabled when the Enable Auto Save option is selected. The range is 1-120 minutes, the default setting is 5.
· Automatically Save Before Compile - Toggles auto-saving of code files before a compile.

· Automatically Stamp File with Creation and Last Modified Date -This option automatically stamps all Workspace files with Creation and Last Modified dates when the file is closed (default = enabled).
· Editor Window tabs - These options allow you to toggle the Source Code Editor Window tabs (), and set their style and location.
· Enable Window Tabs - This option toggles the display of the window tabs that appear by default along the lower edge of the Source Code Editor windows area of the GUI. These tabs provide easy access for each open Source Code Editor window. If this option is not selected, the following tab-oriented options are disabled.
· Enable File Icons In Tabs - This option toggles the file icons displayed in the Source Code Editor window tabs. [image:]
· Enable Window Close Button - This option toggles the Window Close button ().
· When Closing the Workspace - This section contains options for closing files associated with a Workspace that is being closed. The options are:
· Close Associated Files Without Prompting
· Always Prompt Before Closing Associated Files
· Do Not Prompt or Close Associated Files
· When Removing a File From the Workspace - This section contains various options for closing files when they are removed from the current Workspace. The options are:
· Close File Without Prompting
· Always Prompt Before Closing Files
· Do Not Prompt or Close File
Customize Menu
Select Settings > Customize to open the customize dialog, where you can set various application-level customizations. This dialog contains the following tabs.
· Command tab - Contains options to add/remove commands from the toolbars
· Toolbars tab - Contains options to add/delete/rename and reset the toolbars
· Tools tab - Contains optins to add a shortcut to another application in the Tools menu
· Keyboard tab - Contains options to set custom keyboard accelerators (shortcut keys/ key combinations) often-used commands
· Menu tab - Contains options to customize the menus and reset them to their original default state.
· Options tab - Contains options to set a few basic toolbar options we will go over a few of these tabs on the next few pages:

Device Addressing in NetLinx
Lesson Topics
· Device Addressing in NetLinx
· Device:Port:System
· DIP Switch
· Programmer Software and Settings Checklist
Device Addressing in NetLinx
The NetLinx control system communicates to other NetLinx control devices using the control networks of ICSLan and AXLink. A device address is assigned to each control device so the NetLinx Master can know where to send messages, or so that the Master knows who is sending the message. Each message sent on these networks contains the destination address as well as the address of the device sending the message.

*Device numbering should remain standard. Recommendations are:
	Device:
	Types:
	Comments:

	0
	Master
	

	1-255
	AXLink Devices
	Legacy devices, keypads, thermostats, and PDUs

	301-3072
	NetLinx Card Frames
	Start at frame number 25 - (frame# * 12) + Slot #

	5001
	NetLinx Controller
	Fixed number for NetLinx integrated device

	5002
	Enova Switcher
	Fixed number for NetLinx integrated switcher

	5003-6999
	ICSLan NetLinx Devices
	EXB-COM2, DXLink TX/RX, etc.

	10001-32000
	ICSLan Peripherals
	Touch Panels, TPI, Inspired Signage, Ethernet keypads

	32001-32767
	Dynamic Devices
	Actual range used by NetLinx master

	32768-36863
	NetLinx Virtual Devices
	User defined virtual devices

	36864-37864
	Dynamic Virtual Devices
	Actual range used by NetLinx master

	41001-42000
	Duet Virtual Devices
	User defined virtual devices for java modules

	45001-45064
	Auto-bind DXLink Transmitters
	Actual range used by NetLinx master

	46001-46064
	Auto-bind DXLink Receivers
	Actual range used by NetLinx master

	[image:]
	Device numbers 1-255 are reserved for AXLink devices. NetLinx devices can be numbered between 256-32000.

Setting the Address
The device address is set in a different manner depending upon which NetLinx device is used.
When some NetLinx devices are shipped from AMX the device address is set to use a dynamic address (an address between 32001 and 32767). A device receives a dynamic address when it is connected to a Master Processor and is powered up for the first time. This address may change each time the device is powered. The reason for this dynamic addressing is so no two devices connected to the same master will have the same address. Since the dynamic address can change each time the system is reset these dynamic addresses should only be considered temporary addresses until a fixed address can be assigned.
NetLinx Device Addressing
After binding to the master, the device address of a NetLinx ICSLan expansion box (EXB) is set using NetLinx Studio (Diagnostics/Device Addressing).

[image:]
FIG. 1 Device Addressing Dialog under the Diagnostics Menu
There are two ways to address the EXB. First if you are certain which dynamic address has been assigned to the EXB you can enter that address in the Device/System Change of Address Options section of the dialog box. Or, if you are not sure of the dynamic address the EXB can be addressed using the ID Mode section. To determine that address that has been dynamically assigned you can look at the Online tab in the Workspace Window. (To show the Workspace Window, select Workspace from the View menu on the menu bar.)

FIG. 2 Online Tree under the Workspace area
In this example the EXB has been assigned device address 32002 on System 1. This information should be entered in the Device to Change area of the Change Address section of the Device Addressing tab (See FIG. 1.) Check the boxes to indicate if you want to change the device address or the system ID or both. Then enter the device address and system number you want to assign to that device. For example if we want to change this EXB to device 5101 on System 1, we would check the Change Device box and enter 5101 in the adjacent field.

This works well if there is only one EXB in the system, but what if there are several? In this case it may be difficult to determine which EXB is connected to which controlled devices. To make that easier AMX developed the ID Mode for device addressing. To address a device using the ID Mode, in the section labeled ID Mode enter the system ID of the system the EXB is connected to, then enter the desired Device number and System ID that you wish to assign to the EXB then press Start Identify Mode. A green indicator note under the Cancel Identify Mode button will light up. At this time press the ID button on the EXB you want to have that address assigned to.

FIG. 3 Device Addressing Dialog after the Start Identify button is pressed.
That will bring up a Successful Identification Made message (FIG. 4) indicating that the EXB address has been set. Continue this process for the remaining EXBs in the system until all have been given a fixed device address.

FIG. 4 Device Addressing Dialog after Successful Identification has been Made

NetLinx CardFrame Addressing
Addressing the cards in the NetLinx CardFrame is different than addressing other NetLinx devices. On the rear of the CardFrame is an eight position DIP switch that is used to assign a number for that CardFrame. Each position of the DIP switch relates to a position of a binary eight bit word. If the switch is on that binary position has a value of 1, if it is off that binary position has a value of 0. Valid decimal values for the CardFrame number are 0-255. To avoid address conflicts with AXLink devices, CardFrame numbers should start at 25.

Rear/ right view

FIG. 6 NetLinx CardFrame/ DIP Switch
Set the CardFrame Number to Assign Device Addresses to a CardFrame (NXF)
1. Disconnect power from the CardFrame.
2. Determine desired address range for devices in the CardFrame. AMX recommends CardFrame device addresses (the cards) start at 301.
3. Turn on the appropriate switches on the CardFrame DIP Switch to set the CardFrame number. To use our recommended device address set the CardFrame number to 25. (Switch one on, switch four on, switch five on, and all others off.)
4. Re-power the CardFrame.
5. Insert control cards in the desired slots. Cards will be assigned an address as CardFrame number *12 + slot number.

A little bit of math is required to determine the starting address. The DIP switch assigns a CardFrame number which is then multiplied by 12 and that result is added to the card slot number to get the address for that card.

(DIP switch address x 12) + Card Slot Number (1-12) = Device Address

For example if we have a card in slot 3 and the CardFrame number is 32 (switch 6 is on, all the others are off) the device address for the card is:

(32 x 12) + 3 = 387

The address assigned to the card in the CardFrame overrides the address stored in memory of the Control Card. If the Control Card in the CardFrame is removed and placed in a NetModule Shell it does not retain the address from the CardFrame, but reverts to the last address it received when it was in a NetModule, or to a dynamic address as set at the factory if a fixed address was not yet assigned.
DIP Switch
There are two kinds of configurations for an AMX Control System, hardware and software. For the hardware configuration a DIP switch is used. DIP stands for Dual Inline Package and is a group of switches mounted to the module device that plugs into a PC board. The following are all configured with a DIP switch:

· NetLinx CardFrames
· AxLink Keypads
· NXA-PDU-1508-08 Power Distribution Unit

DIP Switch 2.0 is a 32-bit Windows® program that graphically shows the DIP switch settings. The ON (down) and OFF (up) positions on the DIP switches are dynamically set when you enter device numbers and choose communication port options. You can also use the DIP switches to check a device number and/or communication setting. Set the program's DIP switches by clicking inside the ON or OFF switch area so the DIP switches match the settings on the device or communication port or by entering a number in the CardFrame Number.

[image:]
 FIG. 7 DIP Switch 2.0

Configuring the DIP Switch for the NetLinx Master
You can use the Program Port DIP Switch to set the Master to Program Run Disable (PRD) mode according to the settings listed in the table.
	PRD Mode Settings
	

	PRD Mode
	Position 1
	Position 2
	Normal mode (default)
	OFF
	OFF

	PRD Mode
	ON
	OFF

PRD mode prevents the NetLinx program stored in the master from running when you power up the master. PRD mode should only be used when you suspect the resident NetLinx program is causing inadvertent communication and/or control problems. If necessary, place the master in PRD mode and use the NetLinx Studio program to resolve the communication and/or control problems with the resident NetLinx program. Then, download the new NetLinx program and try again.

Setting the Program Port DIP Switch
1. Disconnect the power supply from the 2-pin PWR (green) connector on the master.
2. On the rear of the master, set DIP switch positions according to the information listed in the Baud Rate Settings and PRD Mode Settings table below.
3. Reconnect the 12 VDC power supply to the 2-pin PWR connector.

Program Port DIP Switch - baud rate settings
The Program Port DIP Switch is located on the rear of the master. Use this DIP Switch to set the baud rate for the Program Port, according to the settings shown in the following table. Make sure the baud rate you set matches the baud rate on your PC's COM port before attempting to connect to the Master. By default, the baud rate is set to 38,400bps for serial and 115,200bps for USB. Note the orientation of the DIP Switch and the ON position label.

	Baud Rate Setting
	
	
	
	

	Baud Rate
	Position 5
	Position 6
	Position 7
	Position 8

	9600 bps
	OFF
	ON
	OFF
	ON

	38,400 bps
	OFF
	ON
	ON
	ON

	57,600 bps
	ON
	OFF
	OFF
	OFF

	115,200 bps
	ON
	ON
	ON
	ON

System ID Numbering
Since more than 65,000 NetLinx masters can be connected together a method to identify those masters is needed. Each master is assigned a system number, much in the same way as the device number is assigned, in fact it is done from the same device addressing tab of the NetLinx Diagnostics dialog. By default the NetLinx masters are shipped from AMX set to System ID number 1. To change the System ID of a NetLinx master instead of changing the Device ID, we simply change the System ID. Open the Device Addressing dialog from the Diagnostics menu.

[image:]
FIG. 8 Device Addressing Dialog Box under the Diagnostics Menu
In the Device Addressing section enter the System ID of the master you want to change. (The current system ID is shown in the top of the Online tab of the Project Navigator). Check the Change System box and enter the new System ID in the adjacent field. Click on Reboot Master to bring up the master reboot dialogue box and reboot the master.
Device:Port:System
In the NetLinx system a device can have multiple ports, therefore each port must be addressed. Additionally, since up to 65,535 NetLinx systems can be connected together, each device is referenced by the system ID of the connected master. This addressing scheme is referred to as the Device:Port:System triplet.
All devices in a NetLinx system are given D:P:S addresses. Since the idea of ports is unique to the NetLinx system, all AXLink devices have only one port. For example, you have an AXLink keypad connected to a NetLinx system whose system ID is 1, it could be referred to as address 128:1:1.
The D:P:S addressing scheme that will allow a single NetLinx Master to control up to 512,000 Serial and IR controlled devices.

 D:P:S = 10001:1:0

	[image:]
	When assigning an address to a device in DEFINE_DEVICE you can use a "0" for the system number. A system number of "0" refers to the current system. When working in master to master mode you will need to specify the actual system number.

Configure and Address NetLinx System
Lesson Topics
· Set the Communication Settings and Connect to the System
· Verify Devices Online
· Set NetLinx Time and Date
· Configure Network Settings
· Set the System ID and Reboot the Master
· Connect via the Network

Configuring a NetLinx Master
When setting up a NetLinx system the Master card must be configured properly before anything can be done.
· Set the Communications Settings
· Set Networking Information
· Verify devices online
· Set System Time and Date
· Configure Network Settings
· Set the Device Addresses and System ID
Set the Communication Settings and Connect to the Master
To connect to a NetLinx master, use the options in the Master Communication Settings and Communication Settings dialogs to specify the TCP/IP address, serial port or modem settings, depending on the transport connection type specified. These instructions in these topics assume that the physical link between the PC running NetLinx Studio and the NetLinx master is established.

Connecting to a NetLinx Master via TCP/IP
To connect to a NetLinx master, use the options in the Master Communication Settings and Communication Settings dialogs to specify the TCP/IP address, serial port or USB settings, depending on the transport connection type specified. These instructions in these topics assume that the physical link between the PC running NetLinx Studio and the NetLinx master is established.

1. Select Settings > Master Communication Settings to open the Master Communication Settings dialog.

[image:]
2. Click Communication Settings... to access the Communication Settings dialog.
3. Select NetLinx Master as the Platform Selection.
[image:]
4. Select TCP/IP as the Transport Connection Option.
5. Click Settings to open the TCP/IP Settings dialog.
6. Enter the TCP/IP Address of the master.
[image:]

	[image:]
	The Port should always be set to 1319 (default setting). Do not change the Port assignment.

7. Click OK to return to the Communication Settings dialog.
8. Click OK to return to the Master Communication Settings dialog.
9. Click OK to close the Master Communications dialog.

Connecting to a NetLinx Master via Serial Port
To connect to a NetLinx master, use the options in the Master Communication Settings and Communication Settings dialogs to specify the TCP/IP address, serial port or USB settings, depending on the transport connection type specified. These instructions in these topics assume that the physical link between the PC running NetLinx Studio and the NetLinx master is established.
1. Select Settings > Master Communication Settings to open the Master Communication Settings dialog.
2. Click Communication Settings... to access the Communication Settings dialog.
3. Select NetLinx Master as the Platform Selection.
4. Select Serial as the Transport Connection Option.
5. Click Settings to open the Serial Port Settings dialog.

[image:]

6. Select a COM port and specify the communication settings for serial port communications.
7. The default settings are:

Comm Port:	COM1
Baud Rate:	38400
Data Bits:	8
Parity:		None
Stop Bits:	1
Flow Control:	None

8. Click OK to return to the Communication Settings dialog.
9. Click OK to return to the Master Communication Settings dialog.
10. Click OK to close the Master Communications dialog.

Connecting to a NetLinx Master via USB
To connect to a NetLinx master, use the options in the Workspace Communication Settings and Communication Settings dialogs to specify the TCP/IP address, serial port or USB settings, depending on the transport connection type specified. These instructions in these topics assume that the physical link between the PC running NetLinx Studio and the NetLinx master is established.
1. Select Settings > Workspace Communication Settings to open the Workspace Communication Settings dialog.
2. Click System Settings... to access the Active System's Communication Settings dialog.
3. Select USB tab.
4. USB devices will be automatically discovered or click Refresh Devices to search again.
5. Highlight the device you wish to connect to and click Select
6. Click OK to return to the Communication Settings dialog.
7. Click OK to return to the Workspace Communication Settings dialog.
8. Click OK to close the Workspace Communications dialog.
Verify Devices Online
If you are connected to a System with online devices, you can view the online devices, device properties, and device port properties in the Online Tree tab of the Workspace Window.

To view online devices:
1. If the Workspace Window is not visible, select View > Workspace Bar.
2. Open the Online Tree tab.
3. Click the Display command button to open the Online Tree context menu, and select Refresh System Online Tree.
4. All devices currently connected to the Master are displayed in the Online Device Tree.
Set NetLinx Time and Date
Select Tools > Set Master Controller's Date/Time to open the Set Master Controller's Date/Time dialog. Use the options in this dialog to set the time and date for a specified NetLinx Master.

1. In the Master Controller ID text box, enter/edit the target System number (if necessary).
2. To retrieve the current Time/Date settings for the specified target Master, click Get Time/ Date. The Master's current Time/Date settings are displayed in the (read-only) text field.
3. To change the target Master's date setting, click the down arrow next to the Date field to open the calendar window. To change the system's date, click to select the desired day. Use the forward and back arrow buttons to change the month. When you select a new date, the calendar closes and the new date is represented in the Date field.
4. To set the system to today's date, click Today at the bottom of the calendar.
5. To change the target Master's time setting, select a field within the time display (hours, minutes, seconds, or AM/PM) and click the up and down arrows to adjust the selected field.
6. Alternatively, you can highlight the field in the Time display that you want to adjust and type the desired number in its place.
7. If no field is selected within the time display, the up/down arrows affect the hours setting.
8. To set the specified Time/Date settings for the target system click Set Time/Date.
Configure Network Settings
Use the options in the Networking Addresses dialog to change the network settings for a specified NetLinx master.

Changing the System Number on a NetLinx Master
Use the System field in the Device Addressing dialog to change the System number for the connected Master:
1. Select Diagnostics > Device Addressing to access the Device Addressing dialog.
2. In the System to Change dialog, check the Change System box.
3. Specify a new system number in the System text box and click the “Change the Device/System Number” button.
4. Click the Reboot Master button to reboot the master and accept the new changes. Allow 20-30 seconds for the master to reboot.

Changing the IP Address on a NetLinx Device Using DHCP
Use the IP Address options in the Network Addresses dialog to change the IP Address for a specified NetLinx Device (using DHCP):
1. Select Diagnostics > Network Addresses (or click the toolbar button) to access the Network Addresses dialog.
2. At the top of the dialog, enter the specified device's System and Device numbers in the text boxes. The range is 1-65535.
3. Click the Get IP Information button to populate the IP Address fields with the current Host Name and Gateway assignments.
4. Click the Use DHCP radio button, and enter a new Host Name in the text box, if necessary.
5. Click the Set IP Information button to set the new Host Name assignment.
6. Click the Reboot Master button to reboot the master and accept the new changes. Allow 20-30 seconds for the master to reboot.

	[image:]
	When you change the IP Address of a master (if connected via IP), you must also change the communication settings to match the new IP Address in the Master Communications Settings dialog.

Setting the DNS Address for a NetLinx Master
1. Select Diagnostics > Network Addresses (or click the toolbar button) to access the Network Addresses dialog.
2. Enter the specified device's System and Device values in the text boxes at the top of the dialog (ranges = 1-65535).
3. Click Get DNS Information to populate the DNS Address fields with the current Domain Suffix, DNS IP Address #1, DNS IP Address #2 and DNS IP Address #3 assignments (as applicable).
4. Edit the DNS Address assignments and/or add new DNS address information as needed.
5. Click Set DNS Information to set the new DNS address assignments.

Setting the IP Address for a NetLinx Master
1. Select Diagnostics > Network Addresses (or click the toolbar button) to access the Network Addresses dialog.
2. At the top of the dialog, enter the specified device's System and Device numbers in the text boxes (range = 1-65535).
3. If you change the IP Address of a Master (if connected via IP), you must also change the communication settings to match the new IP Address (in the Workspace Communication Setting dialog).
4. Click Get IP Information to populate the IP Address fields with the current Host Name, IP Address, Subnet Mask and Gateway assignments.
5. Click the Specify IP Address radio button, and enter the new IP Address, Subnet Mask and Gateway assignments in the text boxes, as necessary.
6. Click Set IP Information to set the new IP Address assignment.
7. Click Reboot Master to reboot the master and accept the new changes. Allow 20-30 seconds for the master to reboot.

Changing the IP Address on a NetLinx Master (Use DHCP)
Use the options in the Network Addresses dialog to change the IP Address for a specified NetLinx device (using DHCP).
1. Select Diagnostics > Network Addresses (or click the toolbar button) to access the Network Addresses dialog.
2. At the top of the dialog, enter the specified device's System and Device numbers in the text boxes. The range is 1-65535.
3. Click the Get IP Information button to populate the IP Address fields with the current Host Name and Gateway assignments.
4. Click the Use DHCP radio button, and enter the new Host Name in the text box, if necessary.
5. Click the Set IP Information button to set the new Host Name assignment. A message will be displayed indicating that the Master has accepted the new settings.
6. Click the Reboot Master button to reboot the Master and accept the new changes. Allow 20-30 seconds for the Master to reboot.

**MISSING SECTION – Set system ID and Reboot Master
**MISSING SECTION – Connect via the Network

Programmer Software and Settings Checklist
NetLinx Master Configuration (Initial Setup):
· Connect to Master through program port
· Set System Time & Date (Affects program references to TIME)
· Go to Tools/Set Master Controller’s Date/Time to open the dialog in NetLinx Studio
· Click "Set Time/Date" to set the NetLinx master to the time / date shown
· Time shown without intervention is from the PC control panel clock
· Click "Get Time/Date" to see what the NetLinx master is already set to
· Type new time / date as required
· Set System Number ______
· Go to Diagnostics/Device Addressing in NetLinx Studio
· System Number Factory Default is 1. If multiple systems are used on the same network, unique system numbers are recommended. If the systems will communicate with each other (Master to Master) unique system numbers are REQUIRED.
· Set Device Addresses
· Go to Diagnostics/Device Addressing in NetLinx Studio
· Use Dip Switches to set AXLink device addresses	
· Use Dip Switches to set NetLinx cardframe address (see Dip Switch 2.0 for settings help)
· First card slot address = Dipswitch setting * 12 + Slot Number
· Setup URL list (only if Master to Master communication is required)
· Your programmer may have already done this in the code. You can check Diagnostics/URL Listing and click "Get URL List". Any identified links to other masters will be listed.
· If not there, add the IP address of each required system. NOTE: The IP address only needs to be added to one side of the connection. For more information on Master to Master connections, refer to TN #919
· Setup Networking
· From Client's Network Administrator, determine whether DHCP or Static IP addressing will be used
· Got to Diagnostics/Network Addresses Select DHCP or Specify
· If Specify, enter IP, Subnet, and Gateway information obtained from Network Administrator.
· Click Set IP Information
· Click OK the Reboot
· Connect to Master over IP, using address from previous step

System Preparation:
· Using NetLinx Studio, Workspace Wizard
· In the Workspace window, import project support files
· Program source code (.axs)
· IR files for each IR controlled device (.irl, .irv)
· Serial Protocol reference files (if available--.doc, .txt, etc.)
· Touch Panel / Keypad files (.tpd, .kpd, .ovl, etc.)
· System Drawings (.dwg, .vsd, etc.)
· Owner's Manuals (.pdf, .doc, etc.)
· Set Device Mapping for each IR, Keypad, Touch Panel, and source code file
· Compile source code, if available (there should be no compile errors at this point)
· Transfer project files to the NetLinx master or control device as appropriate
· For NetLinx masters, reboot before testing

Principles of Programming
Lesson Topics
· Format of the Programming Language
· Operators
· Putting it Together
· Mainline
Format of the Programming Language
The AMX Netlinx programming language is a free format language. That means the source code is independent of tabs, additional spacing, and carriage returns. However, don’t let the free format fool you! Utilizing tabs and carriage returns in a consistent method of code placement will make it easier to read, but will not cause errors when the code is compiled.

DEFINE_EVENT
button_event[dvTP,1]
{
 push:
 {
 if (x = 1)
 {
 y = 2;
 z = 3;
 }
 }
}

The above program statement executes the same even if it looks like this:
 button_event[dvTP,1]{push: {if(x = 1) {y = 2; z = 3;}}}

	[image:]
	The syntax is identical, but the spacing is different. The first method is recommended because it is easier to read, and adheres to AMX programming conventions.

Language Basics
Identifiers, Keywords and Operators are used to form a statement.

· Keywords are reserved words that perform a specific function or operation in the AMX Program
· An operator is a character that performs a specific mathematical, relational, or logical function
· For example, the operator used to set a variable equal to a value is '='
· The statement used to set variable X to the value 5 is X = 5 and is read as “x gets 5”.
· Identifiers are used to denote a device, constant, or variable. There are certain guidelines for identifiers:
· Identifiers must begin with a letter followed by any combination of letters, numbers, or underscores. No spaces allowed.
· The identifier must have fewer than 27 characters
· Identifiers are not case-sensitive
· Each identifier must be unique. Once you define VHS3, do not choose the same name for a different identifier.
· Valid identifiers: T_PANEL, dvCD3, VCR3_SELECT
· Invalid identifiers: 3VHS, CD PLAYER, *RGB4

A statement is a complete operation that includes keywords and its parameters
· For example, the keyword to turn a channel on is ON, and the statement to turn on a particular channel is on[dvRelays,4];
· Statements can also involve mathematical or logical operations when operators are used.
· Semicolons at the end of a statement are optional but preferred for readability and compiling accuracy.

on[dvRelays,5];
X = 5;
Identifier
Statement
Keyword
Operator

Compound Statements are made up of several statements that are grouped together by a set of braces giving you the ability to have multiple statements within one argument.
· Compound statements are used where several statements are to be executed as a single event.
· The statements are executed in the sequence they are programmed.

	[image:]
	The number of open and closed braces must be the same in your program. After compiling, NetLinx will list an error if the numbers are different. It is recommended that you insert braces in pairs to avoid a mismatch.

For an Event, when button 1 on dvTP is pressed, relay 5 on dvRelays is turned on. Also, the variable nLastRelay is assigned the value of 5. The open brace indicates the beginning of the compound statement, and the close brace ends it.

button_event[dvTP,1]
{
 push:
 {
 on[dvRelays,5];
 nLastRelay = 5;
 }
}

If you only need the relay to be turned on, the statement could have been written like this:

button_event[dvTP,1]
{
 push:
 on[dvRelays,5];
}

Since there is only one statement after the PUSH, braces are not necessary, but should be used to make the program easier to read and makes for a good habit. The following table lists the special symbols that are used when writing code.

	Special Symbols

	Operator
	Name
	Function

	{ }
	Braces
	· Combine several statements into a compound statement.
· In NetLinx, Braces are also used to group "sets" of data or information.

	[]
	Brackets
	· Enclose the device-channel set: [device, channel]
· Enclose the location of a storage space (index) in an array: arrayName[5]

	()
	Parentheses
	· Enclose the expression after an IF statement: if (X = 1)
· Enclose a mutually exclusive set: ([dvRealy,1], [dvRelay,2])
· Enclose DEFINE_CALL parameter list: define_call ’TEST’ (parameters)
· Enclose DEFINE_FUNCTION parameter list: define_function fnSwitch(parameters)
· Group a mathematical operation: lNewValue = (x * y) + 4;

	(**) or
/* */
	Comments
	• Enclose helpful descriptions or remarks that are not considered part of the program and have no effect on the operation of the program.

	//
	Comments
	• In NetLinx, the double slash is used for an end of line comment.

Operators
An operator is a character (or group of characters) that performs a specific operational function. Each operator type is described below.
Arithmetic Operators
Arithmetic operators create a numeric value from one or more operations such as addition, multiplication, and division.

	Arithmetic Operators

	Operator
	Function

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

	%
	Modulo (remainder after division)

Relational Operators
A relational operator is a conditional statement and tells the program whether to execute a particular function or functions in the program.

	Relational Operators

	Operator
	Function

	<
	Less Than

	>
	Greater Than

	==
	Equal To

	<=
	Less Than or Equal To

	>=
	Greater Than or Equal To

	<>
	Not Equal To

Logical Operators
Logical operators compare two conditions or, in the case of NOT, invert one condition. A true or false result is produced.

	Logical Operators
	

	Operator
	Function
	Keyword

	&&
	Logical And
	AND

	||
	Logical Or
	OR

	^^
	Logical Xor
	XOR

	!
	Logical Not
	NOT

Bitwise Operators
Bitwise operators are keywords or symbols that perform a bit-by-bit operation between two items.

	Bitwise Operators
	

	Operator
	Function
	Keyword

	&
	Bitwise And
	BAND

	|
	Bitwise Or
	BOR

	^
	Bitwise Xor
	BXOR

	~
	Bitwise Not
	BNOT

	<<
	Shift Left
	LSHIFT

	>>
	Shift Right
	RSHIFT


· Shift Left shifts the bits of a value to the left n binary positions or effectively multiplies the value by 2n, where n is the number of places to shift. Shift Left is designated by a double less-than sign (<<) or the LSHIFT keyword.
· Shift Right shifts the bits of a value to the right n binary positions or effectively divides the value by 2n, where n is the number of places to shift. Shift Right is designated by a double greater-than sign (>>)or the RSHIFT keyword.

An example of both is shown below:
x = 1;
y = 8;
x = (x << 2); // X is now equal to 4
z = (y >> 3); // Z is now equal to 1
	
Assignment Operators
NetLinx also includes value increment and decrement operators. These operators with variables as statements work just like an Assignment operator or the equal sign does. The Increment-by-One operator or double plus sign (++) increments the value of its variable by one. The Decrement-by-One operator or double minus sign (--) decrements the value of its variable by one. The assignment operators may appear only once in a single NetLinx statement.

	Assignment Operators

	Operator
	Function

	=
	Assignment

	++
	Increment by 1

	--
	Decrement by 1

	

An example of value increment and decrement operators is shown below.
X = 1;
Y = 5;
X++; // X is now equal to 2
Y--; // Y is now equal to 4
The following rules apply to the use of Direct assignment operators:

· The "=" operator may be used to assign
· Expressions to intrinsic type variables (see Data Types)
· Arrays to other array of matching size and type
· Structures to other structures of the same type
· The "++" and "--" operators are statements and cannot appear within expressions.

For example:
for (ct = 1; ct < 10; ct++)	// Legal
i = j + 1;			// Legal
i = j++; 	 	// Illegal

	[image:]
	Refer to the Structures subsection of the NetLinx Programming Language Guide for more information on structures.

Operator Precedence
The table below shows the inherent precedence assigned to the operators. As noted in the chart, the NOT (!) operator has the highest precedence in NetLinx systems.

	NetLinx Operator Precedence

	Level
	Operators
	Associability

	1 (highest)
	! ~
	Left To Right

	2
	* / %
	Left To Right

	3
	+ -
	Left To Right

	4
	<< >>
	Left To Right

	5
	< <= > >= = == <>
	Left To Right

	6
	& | ^
	Left To Right

	7 (lowest)
	&& || ^^
	Left To Right

Putting it Together

Using Templates
A typical NetLinx program is composed of a number of different sections. Each section defines some aspect of a program such as device definitions, variable declarations, channel characteristics, or event processing.

Section 1 - you have your Definitions. For example, DEFINE_DEVICE is how you tell the processor the D:P:S addresses of devices you’re using within the program. DEFINE_VARIABLE gives names to places you wish to store data.

[image:]

Section 2 & 3, DEFINE_START – Sets defaults and initializes data before devices come online. DATA_EVENT – Tells the processor what to pay attention to and what actions to take.

[image: Capture]
Section 3, DEFINE_EVENT happens when something goes in or out of the processor, the program waits for a triggering mechanism for it to act. Those mechanisms are called events.
[image:]
Section 4, DEFINE_PROGRAM, also called Mainline, is for repetitive tasks like Feedback.
[image:]

Mainline in NetLinx
Mainline is the section of the program that is executed continuously by the NetLinx Central Controller. DEFINE_PROGRAM contains the code known as Mainline that is executed continuously as long as the Controller has power.

In a NetLinx system, either DEFINE_PROGRAM or DEFINE_EVENT is required. Other sections are required only to support code in one of these two sections, although the Compiler might require more.

NetLinx processes network activity through a separate thread of execution. Bus activity is serviced concurrently with event processing and Mainline execution.

The DEFINE_EVENT section provides the most efficient mechanism for processing events since Mainline does not have to be traversed to process a single I/O request. A handler can be defined for processing device-specific events as well as providing feedback for the device initiating the event notification. If a handler is present, Mainline will be interrupted to process the event. Once the handler completes its execution, the system is ready to process the next input message. When there are no more messages pending, Mainline is run. In effect, Mainline becomes an idle time process. This can be somewhat misleading however. Tech note #993 describes what causes DEFINE_PROGRAM to execute in more detail.

	[image:]
	Refer to the Structures subsection of the NetLinx Programming Language Guide for more information on structures.

FIG. 1 illustrates Message and Mainline processing as it appears in the NetLinx system. Note that bus servicing is taken care of by a separate process thread (Connection Manager & Message Dispatcher) and therefore is not a task that must follow Mainline.

DEFINE_EVENTS
Event Handlers
DEFINE_PROGRAM
Mainline
End of Program
Message not Handled
or
No More Messages
Next Message
Next Message
 1. Service All Waits
 2. Turn off Expired Pulses
Message
Queue
Messages
Message
Dispatcher
Connection
Manager
Communications
Bus

FIG. 1 Message and Mainline Processing in the NetLinx System

Netlinx Programming and Events
Lesson Topics
· Netlinx Programming
· Event Handlers
· BUTTON_EVENTS
· CHANNEL_EVENTS
Netlinx Programming
In traditional programming terms Netlinx is a non-object oriented language. But, we can use the concept of objects for things like a VCR, DVD, CD, switcher, projector, etc. Objects have Properties and Methods. Properties describe the object. Properties are implemented in NetLinx as variables, constants, and structures. Methods are actions that the object performs. Methods are implemented in NetLinx by using the various NetLinx keywords like SEND_STRING, ON, OFF, PULSE, etc. These commands are enclosed within subroutines, the Push, Release, Hold sections of BUTTON_EVENTs, in DATA_EVENTs, etc. An example would be a multi-disc CD Changer. The CD Changer is the Object. Some Properties would be:
· Power Flag - keeps track of whether the power is on or off
· Disc number - keeps track of what disc is selected
· Function - keeps track of what transport function is active (Play, Stop, etc)
· Track - keeps track of what music track is currently selected

Some Methods would be:
· Play
· Stop
· Pause
· Skip Forward
· Skip Reverse
· Fast Forward
· Rewind

The code to implement this might look like this:

DEFINE_VARIABLE
non_volatile integer nCD_PowerFlag;
volatile integer nDiscNum;
non_volatile char sTransportStatus[15];
volatile integer nTrackNumber;

DEFINE_EVENT
button_event[dvTP,10]
{
 push:
 {
 pulse[dvCD,27]; //Go to Disc #2
 nDiscNum = 2;
 }
}
button_event[dvTP,1]
{
 push:
 {
 pulse[dvCD,1]; //Play
 sTransportStatus = ‘Playing’;
 }
}

Buttons on an AMX touch panel can be considered an Object also. Some of the Properties of a button are:

Associated device number
Channel number
Feedback type (channel, momentary, etc.)
Variable text channel number
Level number

The Methods of a button are:

Push
Release
Hold

Event Handlers
All interactions between external devices and the master processor are handled with Events. The processor runs mainline code, services the wait and pulse queues, and checks the bus for any changes in device status. These interactions or changes in status are Events. There are handlers to support six types of events:
· BUTTON_EVENTs include pushes, releases, and holds, which are associated with a push or release on a particular device-channel.
· CHANNEL_EVENTs occur when an output change (On/Off) is detected on a device channel.
· DATA_EVENTs include commands, strings, status, and error messages.
· LEVEL_EVENTs are received as a result of a level change on a particular device.
· TIMELINE_EVENTs trigger events based on a sequence of times.
· CUSTOM_EVENTs can be user created or perform special functions for devices like touch panels.

	[image:]
	The processing of an event associated with a given device, channel, device-channel, level, or device-level array must be completed before processing can begin on another event associated with the same array

DEFINE_EVENT
NetLinx has a special program section called DEFINE_EVENT to handle the incoming events.

NetLinx maintains a table of the defined event handlers, when a new event comes into the NetLinx processing queue, the event is compared against the table of events. If the event is found, only the code in the event definition is evaluated and executed, Mainline is bypassed. If an event handler is not defined, Mainline is run, and the event is evaluated against the Mainline code. This provides a more efficient mechanism for processing events, since Mainline is not required to process a single I/O request. If no events are pending, mainline is run. Mainline becomes an idle time process.
FIG. 1
Steps Involved in Processing an Event
Run Mainline
Event
handler
available?
Start
Stop
Run event
handler
NO
YES

	[image:]
	More than one handler can be defined for the same event. In this case, the handlers are executed in the order in which they are defined in the program.

The event handler descriptions are:

· DEVICE refers to a device specification:
· DEVICE A single device number constant
· D:P:S A constant device specification such as 128:1:0
· DEV[] A device array

· CHANNEL refers to:
· CHANNEL A single channel number constant
· CHAN[] An integer array of channel numbers
· DEVCHAN[] A device-channel array

· LEVEL refers to:
· LEVEL	A single level number constant
· LEV[] An integer array of level numbers
· DEVLEV[] A device-level array

With the addition of the DEFINE_EVENT section for processing events, mainline becomes greatly diminished in NetLinx, if not totally eliminated. Programs can still be written using the traditional technique of processing events and providing feedback in mainline code. However, programs written using the event table structure will run faster and be much easier to maintain. Additionally, programs relying heavily on DEFINE_PROGRAM will most likely have adverse effects when running on an NX series master and it is recommended to limit its use to simple feedback statements.

BUTTON_EVENTs
A BUTTON_EVENT occurs when an Input Channel turns on and off. When you think about events which may occur in relation to a button in a control system the events will fall into one of three categories:

· What happens when the button is pushed
· What happens when the button is released
· What happens if the button is held

The Structure For BUTTON_EVENTs
BUTTON_EVENTs include PUSHes, RELEASEs, and HOLDs. These events are associated with a push or release on a particular device-channel. A sample BUTTON_EVENT is shown below:

button_event [<device>,<channel>]
{
 push:
 {
 //push event handler code
 }
 release:
 {
 //release event handler code
 }
 hold[<time>,[REPEAT]]:
 {
 //hold event handler code
 }
}
What information describes a BUTTON_EVENT?

· Channel number of the button
· The D:P:S device number of the device generating the BUTTON_EVENT
· The individual Device Number, Port and System ID used for the D:P:S
· The amount of time the button has been held

The [<device>, <channel>] declaration can contain a DEV device set, or a DEVCHAN device-channel set in addition to an individual device and channel declarations. A HOLD event handler specifies the actions that should be performed when a button is pressed and held for a minimum length of time indicated by the TIME parameter (TIME is specified in 0.1 second increments). The REPEAT keyword specifies that the event notification should be repeated in TIME increments as long as the button is held. The BUTTON object is available to the BUTTON_EVENT handler as a local variable.

The following is an example of how a block code can be written using the NetLinx BUTTON_EVENT handler. The code below will send an ‘A’ to an RS-232 port defined as dvKC1 upon a button push and will repeat the ‘A’ string every 0.5 seconds until the button is released.

NetLinx BUTTON_EVENT:
DEFINE_EVENT
button_event[dvTP1,10]
{
 push:
 {
 to[button.input]; // Momentary button feedback
 sendstring dvKC1, "‘A’"; // Send ASCII string to device
 }
 hold[5,REPEAT]:
 {
 send_string dvKC1, "‘A’"; // Send ASCII string to device
 }
}

In addition to evaluating the push within the event handler structure, you can see the simplified logic for creating the repeating ‘A’ string using the HOLD event handler.

CHANNEL_EVENTs
Channel_Events are similar to Button_Events. Channel_Events are generated by an ON, OFF, PULSE, TO, or MIN_TO. CHANNEL_EVENTs are very simple and only have two conditions:
· What happens when the channel turns on
· What happens when the channel turns off
The format for a CHANNEL_EVENT is shown below:
channel_event[<device>,<channel>]
{
 on:
 {
 // On event handler code
 }
 off:
 {
 // Off event handler code
 }
}

Like BUTTON_EVENTs, the [<device>, <channel>] declaration can contain a DEV device set, or a DEVCHAN device-channel set in addition to individual device and channel declarations.

What information describes a CHANNEL_EVENT?

· Channel number of the device
· The D:P:S Device number of the relay card that contains the relay
· The individual Device number, Port and System ID of the D:P:S device number

In the following example, a CHANNEL_EVENT is defined to turn off a video projector every time the projector lift is raised. In NetLinx, you define a CHANNEL_EVENT for the ‘Projector Lift Up’ relay and tell the system to turn off the projector every time this relay is turned on. Since turning on the relay or pulsing the relay does not produce a push, a BUTTON_EVENT is not generated.

NetLinx Button and CHANNEL_EVENTs:

DEFINE_EVENT

button_event[dvTP1,21] // LIFT UP BUTTON
{
 push:
 {
 pulse[dvRelay,LIFT_UP];
 }
}

button_event[dvTP1,22] // SYSTEM OFF BUTTON
{
 push:
 {
 pulse[dvRELAY,RACK_OFF];
 pulse[dvRELAY,LIFT_UP];
 }
}

channel_event [dvRELAY,LIFT_UP] // LIFT UP RELAY EVENT
{
 on:
 {
 pulse[dvProj,PWR_OFF];
 }
}

DATA_EVENTs
This keyword defines a DATA_EVENT handler. This type of handler processes COMMAND, STRING, ONLINE, OFFLINE and ONERROR events. Please see DATA_EVENTs on page 145 for more information on this Event.

LEVEL_EVENTs
This keyword defines a LEVEL_EVENT handler. This type of handler is triggered by a level change on a particular device. Please go to LEVEL_EVENTs on page 129 for more information on this Event.

TIMELINE_EVENTs
A TIMELINE_EVENT is generated when the timer of the timeline matches a value in the timeline array. Please go to TIMELINE_EVENTs on page 204 for more information on this Event.

Event Parameters
It has already been stated that DEFINE_EVENT handlers are stored in an event table providing quick access to code that must be executed when an event is received. The event table keeps a list of all events in a sorted order to more quickly determine which code needs to be accessed for a giving incoming event. The event table is built before DEFINE_START runs and it is not changed any time after that unless REBUILD_EVENT() is called. As a result, there are certain rules that must be applied to the parameters used in DEFINE_EVENTs.

Since the event table is built before DEFINE_START, all event parameters must contain the correct information prior to DEFINE_START. This requires that all EVENT parameters must be defined at compile time. In addition, there are many parameter "shortcuts" to help fulfill this requirement.

Using BUTTON_EVENT as an example, the simplest version of event parameters is a device and channel reference. In the following example: Example 1:

DEFINE_DEVICE
dvTp = 10001:1:0;

DEFINE_EVENT
button_event[dvTp,1]
{
 push:
 {
 send_string 0,'Button 1 of dvTp was pushed';
 }
}

The device, dvTp, was defined in the DEFINE_DEVICE section, which has the effect of making it an initialized variable of type DEV, and the channel number was a hard-coded value of 1. Since both of these value were defined at compile time, the event is entered into the event table correctly. Let's take another example:

Example 2:
DEFINE_DEVICE
dvTp = 10001:1:0;

DEFINE_VARIABLE
volatile integer nMyChannel;
DEFINE_START
nMyChannel = 1;

DEFINE_EVENT
button_event[dvTp,nMyChannel]
{
 push:
 {
 send_string 0,"'Button ',itoa(nMyChannel),' of dvTp was pushed'";
 }
}

In this example, the event will not perform as the previous one did. When the code is compiled, the event parameters are dvTp, which is already assigned, and nMyChannel, which has a value of 0.
nMyChannel does not get assigned a value of 1 until DEFINE_START, at which time the event has already been added to the event table. If you were to run this code, you would discover that it did in fact run when button 1 was pushed, leading us to one of the "shortcuts":

A value of 0 for a Channel or Level Number in a BUTTON_EVENT, CHANNEL_EVENT or LEVEL_EVENT will be interpreted as an event handler for all events of that type from the given device number(s).

So, the reason the above example runs when button 1 was pushed is that the above example runs when any button on dvTp is pushed. This "shortcut" was added so you could define an event handler for all buttons, channel or levels of a device without having to define a DEVCHAN of DEVLEV containing every value you may want to handle.

To make the example 2 behave like the example 1, we simply need to make sure the value of nMyChannel contains a value of 1 at compile time. This is simply done by initializing nMyChannel a value of 1 in the DEFINE_VARIABLE section. The new example reads:

Example 3:

DEFINE_DEVICE
dvTp = 10001:1:0;

DEFINE_VARIABLE
volatile integer nMyChannel = 1;
DEFINE_EVENT
button_event[dvTp,nMyChannel]
{
 push:
 {
 send_string 0,"'Button ',itoa(nMyChannel),' of dvTp was pushed'";
 }
}

To make things more predictable and easier to follow use zero as a wildcard.

Example 4:

DEFINE_EVENT
button_event[dvTp,0]
{
 push:
 {
 send_string 0,"'Button ',itoa(button.input.channel),' of dvTp was pushed'";
 }
 release:
 {
 send_string 0,"'Button ',itoa(button.input.channel),' of dvTp was released'";
 }
}

This will have predicable results and eliminates the need for large arrays or many stacked BUTTON_EVENTS. By setting touch panel button codes to their corresponding SNAPI channel numbers you can greatly increase the flexibility of your code. This is the preferred method for simple IR device control or for controlling devices using Café Duet modules.

There are some additional parameter "shortcuts" available. In all cases, the following rules apply:
· When a DEV can be used, a DEV array can also be used.
· When a DEVCHAN can be used, a DEVCHAN array can be used.
· When a DEVLEV can be used, a DEVLEV array can be used.
· When a CHAR, INTEGER or LONG can be used, a CHAR, INTEGER or LONG array can also be used.
· You can apply more than 1 of the above rules at a time in a given event handler.
· GET_LAST() can be used to determine which index of an array (any type) caused the event to trigger.
The above rules can let you write some interesting event handlers. Let's say you wanted to handle 4 buttons from 6 panels all with one BUTTON_EVENT. You could write:

Example 6:
DEFINE_DEVICE
dvPanel1 = 10001:1:0;
dvPanel2 = 10002:1:0;
dvPanel3 = 10003:1:0;
dvPanel4 = 10004:1:0;
dvPanel5 = 10005:1:0;
dvPanel6 = 10006:1:0;

DEFINE_VARIABLE
VOLATILE DEV daMyPanels[]= {dvPanel1, dvPanel2, dvPanel3, dvPanel4, dvPanel5, dvPanel6};
VOLATILE INTEGER nMyButtons[] = {61, 63, 65, 67};

DEFINE_EVENT
button_event[daMyPanels,nMyButtons]
{
 push:
 {
 stack_var integer nPanelIndex;
stack_var integer nButtonIndex;

nPanelIndex = get_last(daMyPanels); nButtonIndex = get_last(nMyButtons);
send_string 0,"'nButtonIndex=',itoa(nButtonIndex),' was pushed on nPanelIndex=',itoa(nPanelIndex)";
 }
}
This event will be run for all combinations of daMyPanels and nMyButtons, 24 buttons in all. The GET_LAST() function is very useful when running events using arrays as parameters. GET_LAST() returns an index value, starting at 1, for the element that triggered the event. In the case of nButtonIndex, it will contain a value of 1 when button 4 was pressed, a value of 2 when button 3 was pressed, and so on. This can be very useful in the case of transmitters and wired panels where the channel number may not reflect a numerical sequence you would like, such as with numeric keypads or matrix switcher input and output buttons.

Channel Characteristics
Lesson Topics
· Device-Channel Concept
· Input Characteristics
· Output Characteristics
· Feedback Statements
· Mutually Exclusive Groups/ Sets

Controlling Something Over There
The basic idea behind a remote control system is to do something over here to make something happen over there. In the DEFINE_EVENT section of the source code you define what happens when an input is received.
			
· How do you get the inputs into the system?
· How do you generate an output?
· You use devices and channels.
[bookmark: _Toc202146]Device-Channel Concept
Everything that an AMX Control System controls is controlled through a device in the system. Each device communicates to the Central Controller. Most devices, such as a Touch Panel or an Enova DVX have channels which either accept an input, generate an output, or both. These inputs and outputs are referred to in the program as a "device-channel" pair, which is written like this:
[8,1] // DEVICE 8, CHANNEL 1
Or if the device names and constants are used:
[dvVCR, PLAY] // DEVICE dvVCR, CHANNEL PLAY
The device-channel is the most fundamental concept of an AMX Control System, as it is the most common way that an AMX program communicates to the outside world.

All About the Channel
Almost all methods of control require the use of channels on devices. Every channel has two aspects:
· Input Function
· Output Function
[bookmark: _Toc202147]Input Characteristics
When a button is pressed on a control panel the input function of the button sends an input change to the master. The master then directs the reference to the event handler.

Input keywords are generally followed by the [device, channel] set that created the input.
Example: button_event[dvTp,1] or button_event[10001:1:0]

Input Keywords
· PUSH: Input change from off to on when a button is pushed.
· BUTTON_EVENT [DEVICE,CHANNEL]
· RELEASE: Input change from on to off upon the release of a button.
· BUTTON_EVENT [DEVICE,CHANNEL]
· HOLD: A HOLD event handler specifies the actions that should be performed when a button is pressed and held for a minimum length of time indicated by the TIME parameter (TIME is specified in 0.1 second increments).
· HOLD [VALUE,REPEAT]:

	[image:]
	All AMX touch panel and keypad functionality comes down to programming PUSH and RELEASE statements.

Inputs
PUSH/ RELEASE are the leading and trailing edges of a Channel PULSE
	PUSH	RELEASE
Leading
Edge
Trailing
Edge
HOLD

[bookmark: _Toc202148]
Output Characteristics
An output is activated only by a keyword. The output channel change from the system master causes an action on a device. The output function affects channels on a device. The channel can be turned on or off.
ON [dvTp,1];
For an Output function to be sent to a device (like a television), the appropriate input function must be associated to the device. Therefore, once an input function (such as button "1" on a touch panel) is selected, an associated output function (the TV turns on) will occur.

button_event[dvTp,1]
{
 push:
 {
 pulse[dvTV,27];
 }
}

Your program must specify this input/output function.

Some output keywords create a sequence of ON then OFF after some period of time.
PULSE [dvRelay,1];
Output Keywords
ON: The ON keyword turns on a channel or variable. If the channel or variable is already on, its status will remain the same. If the variable contains zero, it is off; therefore, any number other than zero denotes the system as on.
on[dvVCR,2]; // This turns on channel 2 of device VCR
Turn a channel or variable on. Variables simply get set to 1.
on[TEMP]; // This sets the value of the TEMP variable to 1
OFF: Turn a channel or variable off. Variables simply gets assigned a value of 0.
PULSE: Momentarily turns on a channel for a set period of time. The pulse on time is determined by set_pulse_time() system variable and the default pulse time is 1/2 second.
pulse[device,channel];
TO: Toggle a latching channel or variable, or will momentarily turn on a non-latching one until button is released. TO turns ON an Output channel while an Input channel is On and turns off the Output channel when the Input channel turns Off.
to[device,channel];
MIN_TO: Toggle a latching channel or variable, or will momentarily turn on a non-latching channel until the associated button is released. In the case of a momentary channel, the channel will be on for a minimum time specified by set_pulse_time() system variable or the current pulse time setting. If the pulse time has not been previously changed, MIN_TO will use the default pulse time of ½ second.
TOTAL_OFF: Turn off a channel from a mutually exclusive group or to turn off an array of channel numbers or DEVCHAN pairs.

Outputs
ON transitions to the ON state, OFF transitions to the OFF state

ON
OFF

There’s a PULSE that’s a regulated ON/ OFF and a TO that’s a variable ON/ OFF and a MIN_TO which is a fixed pulse (based on current pulse time at a minimum and a variable pulse length afterwards.

		PULSE
TO
Variable

 ON OFF 	 Variable ON/ OFF
 PUSH RELEASE
MIN TO
Regulated
Variable

[bookmark: _Toc202149]Feedback Statements
This section describes how to assign feedback to a button. Feedback refers to changing a button’s state during and after it is pressed. The system does not do this automatically; you must change the button state via the program.

There are two types of feedback:
· Direct - reference to "real time" feedback.
[dvTp,1] = [dvRelay,1];

The touch panel feedback is directly connected to the relay mechanism.
· Indirect - is "pseudo" feedback which means the program turned on feedback because it thinks something directly caused it.

	[image:]
	Where possible, it is best to use direct feedback, since it is tied directly to a channel on a device or a variable..

Feedback involves one statement per button. The first part of the statement references the device-channel of the button that is going to be affected. It is followed by an equal sign (=) ‘gets’ and the condition for feedback. For example:

DEFINE_PROGRAM
[dvTp,1] = [dvRelay,SCREEN_UP];

When dvRelay channel 1 (the constant value of SCREEN_UP) is on, the state of dvTp button 1 will also be on. When the channel is off, the button will be off.
Any reference to a device-channel that does not have the keyword ON, OFF, PUSH, TO, or MIN_TO preceding it is referring to the feedback state of the channel. This is a very important concept, because it is the basis of how feedback works.

One way of creating an output change is to assign a value directly to the device-channel. If the value that you are assigning is another device-channel reference then it tells the processor to take the output status of the device-channel on the right of the = and apply it to the device-channel on the left. For example, when the channel SCREEN_UP on device dvRelay changes, it sends an output change to channel 1 of device dvTp. If the device-channel [dvRelay,SCREEN_UP] is defined as being in a mutually exclusive group, its status will be ON if it was the last channel activated in that set, and the feedback assignment will light button 1 on the Touch Panel.

Grouping Feedback Statements
The feedback statements can be grouped together in a feedback section at the end of the program as shown below:

DEFINE_PROGRAM
[dvTp,3] = [dvRelay,DRAPES_OPEN];
[dvTp,4] = [dvRelay,DRAPES_CLOSE];
[dvTp,5] = [dvRelay,DRAPES_STOP];

This feedback section will act no differently if each statement is placed under its corresponding PUSH statement.
Feedback statements like this are most often placed in the DEFINE_PROGRAM section of the program. However, it is generally recommended on an NX processor that you utilize a TIMELINE_EVENT instead or most preferably, the event that caused the change in the first place.
 Also, make sure to organize them in your program so that they can be easily located. While grouping all of the feedback statements at the end of the program is acceptable, in larger programs it can be confusing to skip from the top where the BUTTON_EVENT statement is located to the bottom where the feedback statements are located. Smaller programs may be easier to manage if all the BUTTON_EVENTs are together and all the feedback statements are together.

[bookmark: _Toc202150]Mutually Exclusive Groups / Sets
Only one channel in a Mutually Exclusive set can be ON at a time. The current channel is turned off before the new channel is turned on.
Defining a Channel as Mutually Exclusive separates the Output (physical) and Feedback states of the channel.

DEFINE_MUTUALLY_EXCLUSIVE
([dvRelay,1],[dvRelay,2])
([dvRelay,3],[dvRelay,4],[dvRelay,5])
Ranges of channels can be assigned using two periods.
The example below defines Relays 1, 2, 3, 4 and 5 as being Mutually Exclusive.

DEFINE_MUTUALLY_EXCLUSIVE
([dvLights,1]..[dvLights,5])
Even if Relay 1 is pulsed so it turns off after 1/2 second, the Feedback will still show that it is on, since it was the last active element in the Mutually Exclusive Group. This kind of Feedback is called latching and helps the processor keep track of the Mutually Exclusive Group. This can be broken however if you declare the device-channels as toggling in the DEFINE_TOGGLING section of the code.

[bookmark: _Toc202151]Software History & Debugging
Lesson Topics
· AMX-PI2
· Types of Errors
· Tracking Down Errors
· Resources for Debugging
AMX-PI2
Open Software History in a web browser. (http://www.amx.com/assets/AMX-PI2/amx-pi2.htm)

This is now a Web-based application on the AMX website that lists the firmware history and all of the functions of EVERY AMX product. Software History lists:

· Release notes of device software/firmware
· Available Channels and their functionality
· Available Levels
· All SEND_COMMAND instructions, format, and functionality
· All SEND_STRING commands, format, and functionality

Use this information to learn the functions available or protocol required for each AMX product.
[bookmark: _Toc202153]Debugging
Types of Errors
No programs are ever written without errors on the first try, and one of the most time-consuming parts of programming is debugging. There are three general types of programming errors:
· Compiler errors: Errors that occur at compile time. The compiler alerts you to these errors immediately and identifies each error and the line where the error occurred. Although, the actual error may be several lines up.
· Messages sent from the compiler to alert you to a Syntax Error or a Definition Error
· Syntax Errors occur when Keywords are misused or Statements have the wrong format
· Definition Errors occur when Identifiers are used within the program but have not been defined.
· These errors must be corrected before the AMX program can be compiled.
· Many errors occur due to typos.
· Run-time errors: Errors that occur after the program has been compiled and loaded into the Central Controller. These errors are caused by program statements that attempt illegal operations.
· Logic errors: Logic errors are errors in program design and thus are the programmer's responsibility; NetLinx cannot tell if the program it is executing is accomplishing what the user intends.
[bookmark: _Toc202154]Tracking Down Errors
Compiler Errors
When the compiler finds an error during the compilation process, it informs the programmer. Most of the time these errors occur due to a typographical error or incorrect syntax of a particular command. Unlike warnings, errors must be corrected before your program can be executed. Compilation errors are described below:
	Compiler Errors
	

	A "<symbol>" was expected
	The compiler is expecting a certain symbol at this particular place.

	Active keyword expected
	An ACTIVE keyword is not present after a SELECT keyword.

	Allowed only in DEFINE_START
	A keyword that is only allowed to appear in the
DEFINE_START section of the program was encountered elsewhere.

	Attempted CALL to undefined subroutine
	A CALL statement refers to a subroutine that has not been defined with a DEFINE_CALL statement.

	Comment never ends, EOF encountered
	A comment begins but never ends. Place a close comment, *) at the end of the unfinished comment.

	Conditional compile nesting too deep
	There are too many nested #IF_DEFINED or
#IF_NOT_DEFINED conditional compilation statements. The limit is 20 nested conditional compilation statements

	Constant type not allowed
	A constant value was declared as latching, toggling, or mutually exclusive, as shown below:
DEFINE_CONSTANT
PLAY = 1
DEFINE_LATCHING
PLAY (* Error: PLAY is a constant *)

	DEFINE_CALL must have a name
	DEFINE_CALL must have a name after it. For example, DEFINE_CALL 'VHS'.

	DEFINE_CALL name already used
	The name of the DEFINE_CALL has already been used. This name cannot be the same as an already declared identifier of any type.

	Device values must be equal
	In a range specification, the devices (or their defined identifiers) must be equal. For example, ([1,1]..[1,5]) is valid; ([1,1]..[2,5]) is not.

	Duplicate symbol
	Duplicate definitions of variables or constants are found. All variables and constants must have unique identifiers.

	Evaluation stack overflow Evaluation stack underflow
	The expression is too complicated. Try breaking it up into smaller pieces.

	Identifier expected
	The compiler is expecting an identifier after a #DEFINE statement or after an integer declaration in the DEFINE_VARIABLE section.

	Identifier is not an array type
	A non-array variable was treated as an array.

	Include file not found
	An INCLUDE statement was encountered, but the specified Include file could not be found.

	Invalid Include file name
	A string literal enclosed in single quotes must follow the
INCLUDE keyword.

	Library file not found
	The library file containing the specified SYSTEM_CALL could not be found.

	Maximum string length exceeded
	String literals are limited in length to 132 characters, including spaces.

	Must be char array reference
	An array type variable was expected in CREATE_BUFFER, CREATE_MULTI_BUFFER, or CLEAR_BUFFER.

	Must be integer reference
	The identifier in question must be an integer. This error occurs when the third parameter of CREATE_LEVEL is an array or array element.

	NetLinx Compiler failed RT: -2147417851 ST:1
	This error means that the compiler cannot find the line number to even check what type of error has occurred, so it gives no details on the cause.
If you get this non-descriptive error when compiling and the code contains modules, check to make sure the module parameters are the right type. If you're trying to pass in a one-dimension array where the module requires a two-dimension array, or a CHAR instead of an INTEGER, etc., this error will occur.

	Out of memory
	The compiler has run out of memory. Free up memory either by removing any pop-up programs or drivers, by using extended memory, or by breaking your program into one or more Include files.

	Parameter mismatch in CALL
	A value or variable passed to a CALL as a parameter is of the wrong type as defined by the DEFINE_CALL statement.

	PROGRAM_NAME must be on line 1
	Move the PROGRAM_NAME= statement to the first line of the program.

	PUSH/RELEASE not allowed within PUSH/ RELEASE
	A PUSH or RELEASE statement was found within a block of code headed by a PUSH or RELEASE statement.

	PUSH/RELEASE not allowed within WAIT
PUSH_CHANNEL not allowed within WAIT
RELEASE_CHANNEL not allowed within WAIT
PUSH_DEVICE not allowed within WAIT
RELEASE_DEVICE not allowed within WAIT
	These keywords are not allowed in a section of code which will be executed due to a WAIT keyword.

	String constant expected
	A string is required for the particular operation. This error occurs if a string literal enclosed in single quotes does not follow the
PROGRAM_NAME keyword.

	String constant never ends, EOF encountered
	A string literal is started but never ends. Add a closing single quotation mark (') to the end of the string.

	String literal expected
	A string is required for the particular operation. This error would occur if a string literal enclosed in single quotes does not follow the #WARN keyword.

	Subroutine may not call itself
	A subroutine cannot call itself. It can, however, call a different subroutine (DEFINE_CALL). FUNCTIONS have recursion!

	Syntax error
	A syntax error is found in an expression. In most cases, this error means that a character is out of place or something is misspelled.

	SYSTEM_CALL name not same as PROGRAM_NAME in <file>
	This error occurs when a library file is compiled and the name of the subroutine in the library file does not match the
PROGRAM_NAME string on the first line of the file.

	This variable type not allowed
	This error occurs when an attempt is made to use an array variable with DEFINE_LATCHING , DEFINE_TOGGLING, or DEFINE_MUTUALLY_EXCLUSIVE .

	TO not allowed within DEFINE_START
TO not allowed within MAINLINE
TO not allowed within RELEASE
TO not allowed within WAIT
	These errors occur if the TO keyword is found in an erroneous location. The TO keyword can only be associated directly with a PUSH statement.

	Too few parameters in CALL
	There are not enough parameters being passed to the subroutine.

	Too many Include files
	A program may only contain up to 20 Include files.

	Too many parameters in CALL
	There are too many parameters being passed to the subroutine.

	Type mismatch in function CALL
	A function was called with a parameter of the wrong type. For instance, attempting to use ITOA with an array as a parameter will result in an error.

	Undefined identifier
	An attempt was made to reference an identifier that has not been defined previously in the program.

	Unmatched #END_IF
	An #END_IF keyword was found, but no #IF_DEFINED or #IF_NOT_DEFINED was previously compiled.

	Unrecognized character in input file
	An invalid character was found during compilation.

	Use SYSTEM_CALL [INSTANCE] 'NAME'
	This error occurs if a SYSTEM_CALL statement is written incorrectly as SYSTEM_CALL 'NAME' [INSTANCE NUMBER].

	Variable assignment not allowed here
	Variables may not be assigned a value when they are defined in the DEFINE_VARIABLE section.

	WAIT not found
	A statement references a WAIT by a name that does not exist. For example, CANCEL_WAIT 'CASS' will produce this error if there is no WAIT named 'CASS'.

Compiler Warnings
Sometimes the compiler generates a warning message instead of an error message; these warning messages always start with "w". A warning about a particular statement means that the statement is not technically an error, but you should be careful doing it. Warnings, unlike errors, do not stop the program from compiling.

Some types of warnings can be disabled in the Compiler Options tab of the Preference dialog.

Common compiler warnings are described below:
	Compiler Warnings

	(w) Cannot assign unlike types
	This warning occurs when a variable or value of one type is assigned to a variable of a different type. Here are some examples:
· Assigning a string literal, string expression, or array to a non-array variable
· Assigning a non-array variable to an entire array
· Assigning an integer array to a non-integer array
· Assigning a two-dimensional array to a one-dimensional array, or vice versa
· Assigning the result of a function that returns an array type to a non-array variable or to a two-dimensional array variable (for example, X = itoa(12), where X is a non-array variable or two-dimensional array variable)
· Assigning the result of a function that returns a non-array type to a one- or two-dimensional array variable (for example, X = atoi('AMX'), where X is a one- or two-dimensional array variable)
This message is a warning and not an error, because X = itoa(12) works correctly when X is a simple variable, since the result is a single value between Ø and 65,535. The generation of this warning can be turned on or off in the Compiler Options tab of the Preference dialog.

	(w) Define_Call is not used
	This warning occurs at the end of program compilation for each
DEFINE_CALL subroutine that was declared but never used. The generation of this warning can be turned on or off in the Compiler Options tab of the Preference dialog

	(w) Integer applies to arrays only
	This warning appears when the keyword INTEGER is applied to a non-array type of variable. Doing this is not an error, because non-array variables are already integers, but it is redundant. The generation of this warning can be turned on or off in the Compiler Options tab of the Preference dialog.

	(w) Possibly too many nested levels
	This warning appears if there is a large amount of nesting in the program. This can happen with a long chain of IF...ELSE IF statements. The solution is to use the SELECT...ACTIVE set of statements. The generation of this warning can be turned on or off in the Compiler Options tab of the Preference dialog.

Internal Diagnostic Messages
The NetLinx Device Notifications functionality in NetLinx Studio v4.x allows you to receive several types of auto-notification messages from one or more specified NetLinx devices. Diagnostic Messages can be received provided that they are enabled (FIG. 1).

[image:]
FIG. 1 NetLinx Compiler tab showing the Compile With Debug Info enabled.
After this is enabled go to the Diagnostic Menu and select Enable NetLinx Device Notifications (FIG. 2). The resulting notification messages are displayed in the Notifications tab of the Output Display window. The Notifications tab contains 13 columns. Each column represents a notification type (which are enabled/disabled in the NetLinx Notification Properties dialog). If a notification type is enabled, the word ON is displayed in the appropriate column. Initially, the only entry in the notifications list is All Devices, and the only notification enabled is Input.

FIG. 2 Diagnostics Menu

	[image:]
	For more information on Using NetLinx Device Notification go to the NetLinx Diagnostics section of the NetLinx Studio instruction manual on www.amx.com.

Logic Errors
Logic Errors or Functional Errors are mistakes in the operations of the system.

Logic Errors can only be identified through testing the system.
· The compiler cannot identify Logic Errors.

Logic Errors fall into two categories:
· YOU never told the system to do something.
· YOU told the system to do the wrong thing.
[bookmark: _Toc202155]Resources For Debugging
It would truly be a wonderful world if the code compiled and the system worked perfectly. Since we do not live in a perfect world, it is often necessary to determine why things don't operate as we intended. Debugging is done in one of three ways; watching the values of variables while running the program, writing strings and values to the Diagnostics Window as check points in the code, or watching the actual data being sent out of the control system's ports. NetLinx Diagnostics, Notifications, Telnet, and Debug are all AMX resources for debugging.

Using NetLinx Diagnostics
The Diagnostics menu contains options that allow you to run various diagnostics operations on NetLinx systems.
Viewing Push Messages
The PUSH keyword is used to find out if a channel has had an input change from off to on, such as when a button is pressed. If the channel has been turned on, the corresponding Push statement is activated. The operation or operations following this Push statement are only executed once after the channel is turned on.

To view Push results, select Diagnostics > Enable Push Message Status Bar Display.

NetLinx Studio displays the most recently received Push, or Push status (Push Enabled/Disabled) in the Status Bar. Left-mouse click on the push message displayed to view a history of push messages. Then, right-mouse click within the list box to view the available options.

Using NetLinx Device Emulation
Emulating a device in NetLinx Studio means that the program generates messages that appear to the master to have come from a specified <D:P:S> combination (real or virtual).
The options in the Emulate a Device dialog allow you to specify the <D:P:S> combination for a device you want to emulate.

Use device emulation to simulate basic control of a specified NetLinx Master, including Channels
(ON/OFF/PUSH/RELEASE), Levels, and String/Commands. Use this option to test specific areas in your Source Code against a specific device.

To use NetLinx Device Emulation:
1. Select Diagnostics > Emulate a Device (or click the toolbar button) to access the Emulate a Device dialog.
2. Enter the Device, Port and System <D:P:S> combination of the device you wish to emulate (real or fictitious). The Device, Port and System value ranges are 0-65535.
3. To emulate a channel (on/off/push/release), enter a valid Channel number to emulate Channel messages (i.e., ON/OFF) for the specified <D:P:S> in the Channel text box.
a. The Channel number range is 0-65535.
b. Select the Push button to emulate a push/release on the channel specified. You may click and hold down the Push button to see how the master controller responds to the push message.
c. Select the On or Off buttons to emulate Channel ON (CHON) and Channel OFF (CHOFF) messages for the specified <D:P:S>.
4. To emulate a level, enter the desired Level (number), Value and data Type (BYTE, CHAR, WIDECHAR, INTEGER, SINTEGER, ULONG, LONG, FLOAT, or DOUBLE), and click Send to emulate the specified level and value.
a. The Level number range is 0-65535.

The list below contains the valid level data types and their ranges:
	
	Min Value
	Max Value

	• CHAR
	0
	255

	• INTEGER
	0
	65535

	• SINTEGER
	-32768
	32767

	• LONG
	0
	4,294,967,295

	• SLONG
	-2,147,483,648
	2,147,483,647

	• FLOAT
	-3.40282346 E+38
	3.40282346 E+38

5. To emulate sending a String or Command, type a String or Command in the Message(s) To Send text box. Use the Return key within the text box to enter a new line for the next message. A CR/LF is inserted at the end of the line.
	[image:]
	Hold down the Shift key to select a specific range of lines to send to the controller instead of all the lines within the edit control.

a. Click the Message Type radio buttons (String or Command) to specify the type of message you are sending.
b. Click Send To Master to send the messages in the Message(s) to Send text box to the master. If none of the messages are selected (highlighted), all messages are sent. If you have selected a line or a range of lines, only the selected messages will be sent
6. Check the Messaging Options checkboxes to Enable Asynchronous Notifications and/or Enable Internal Diagnostic Messages.

	[image:]
	It is recommended that you enable NetLinx Notifications to view the results in the Notifications tab of the Output Display window. For example, in order to view a string sent to a device (via the Emulate Device dialog), you must first enable the Strings to Device notification (in the NetLinx Device Notifications Options dialog). Additionally, to view any strings returned from the device, you must enable the Strings From Device notification.

Using NetLinx Device Control
Controlling a device in NetLinx Studio means that it will appear to a specified System device that messages are being sent from the NetLinx master controller. The options in the Control a Device dialog allow you to specify the <D:P:S> combination for the target device you want to control.

Use device control to simulate basic control of a specified NetLinx device, including Channels
(PUSH/RELEASE), Levels and String/Commands. Use this option to test specific areas in your Source Code against a specific device.

To use NetLinx Device Control:
1. Select Diagnostics > Control a Device (or click the toolbar button) to access the Control a Device dialog.
2. Enter the Device, Port and System <D:P:S> combination of the device you wish to control. The <D:P:S> value ranges are 0 - 65,535.
3. To emulate a channel (on/off/pulse), enter a valid Channel number to emulate Channel messages (i.e., ON, OFF, PULSE) for the specified <D:P:S> in the Channel text box.
a. The Channel number range is 0-65535.
b. Select the Pulse button to emulate a pulse on the channel specified. You may enter a different pulse time to see how the device responds to the pulse message.
c. Select the On or Off buttons to emulate Channel ON (CHON) and Channel OFF (CHOFF) messages for the specified <D:P:S>.
4. To emulate a level, enter the desired Level (number), Value and data Type (BYTE, CHAR, WIDECHAR, INTEGER, SINTEGER, SLONG, LONG, FLOAT, or DOUBLE), and click Send to emulate the specified level and value.
The Level number range is 0-65535.
The list below contains the valid level data types and their ranges:

	
	Min Value
	Max Value

	• CHAR
	0
	255

	• INTEGER
	0
	65535

	• SINTEGER
	-32768
	32767

	• LONG
	0
	4,294,967,295

	• SLONG
	-2,147,483,648
	2,147,483,647

	• FLOAT
	-3.40282346 E+38
	3.40282346 E+38

5. To emulate sending a String or Command, type a String or Command in the Message(s) To Send text box. Use the Return key within the text box to enter a new line for the next message. When entering a send command (in the context of this dialog) do not include the "send_command" in the statement - only type what would normally occur within the quotes, but don't include the quotes either. For example to send the "CALIBRATE" send command, simply type CALIBRATE (no quotes) rather than SEND_COMMAND <dev> 'CALIBRATE';

	[image:]
	Hold down the Shift key to select a specific range of lines to send to the controller instead of all the lines within the edit control.

a. Click the Message Type radio buttons (String or Command) to specify the type of message you are sending.
b. Click Send To Master to send the messages in the Message(s) to Send text box to the master. If none of the messages are selected (highlighted), all messages are sent. If you have selected a line or a range of lines, only the selected messages will be sent.
6. Check the Messaging Options checkboxes to Enable Asynchronous Notifications and/or Enable Internal Diagnostic Messages.

	[image:]
	It is recommended that you enable NetLinx Notifications to view the results in the Notifications tab of the Output Display window. For example, in order to view a string sent to a device (via the Emulate Device dialog), you must first enable the Strings to Device notification (in the NetLinx Device Notifications Options dialog). Additionally, to view any strings returned from the device, you must enable the Strings From Device notification. Strings to and from IP devices do not show up in the notifications window. Use send_string 0,"data.text"; in your code to print the data to the diagnostics window.

Terminal Window
NetLinx Studio provides a terminal interface to NetLinx devices that support a serial terminal connection. The Terminal toolbar is enabled when the Terminal window is opened, with connect/disconnect commands and the (ASCII, Hex, and Decimal) display commands.

Using the Terminal Window
Select Tools > Terminal (or click the toolbar button) to open the Terminal window.
Use the Terminal window to communicate directly with the Master Controller and to configure it, view system messages, or control devices.

· You cannot use the Terminal window while a communication port is in use for a file transfer or debug operation.
· Type "ECHO ON" in the Terminal window display messages.
· If the Terminal window becomes unresponsive, close and re-open the window.
· Use the Format tab of the Preferences dialog to change the appearance of the elements of the Terminal window.
· To use the Terminal window with NetLinx systems, you must be connected to the Master via the PROGRAM port. Otherwise, you can use Windows Telnet for terminal control of NetLinx systems.

The Terminal Window does not support:
· Cut operations.
· Editing operations within the window, other than to input characters at the cursor. (The text in the terminal window actually reflects what has been received from the device. Text that is typed in the window will not appear unless echoing is currently enabled on the device).
Telnet
You can also communicate with the NetLinx Master via Telnet using a TCP/IP connection. Both Telnet and the NetLinx Terminal offer the same commands. In addition to device and system diagnostics, the NetLinx terminal commands also allow for the diagnostics and configuration of NetLinx systems on a network.

You can set your User Defined Telnet program by:
1. Selecting Settings > Preferences to open the Preferences dialog.
2. In the Terminal – TELNET Windows tab, click on the grey box under Default TELNET Program.
3. Browse to and select the .exe file of the Telnet application you wish to use.
4. Click OK to close the Preferences dialog.
5. The new program will be used when you select Launch TELNET Window via User Defined Program.

Debugging Master and Source Code Files
NetLinx Studio contains several useful options for debugging your Master Controller and Source Code files. In order to begin debugging, your computer must be connected to a Master Controller, and you must have a compiled Source Code file active.

	[image:]
	You cannot compile, send/receive files, or change port settings while the program is in debug mode

To enter debug mode:

	[image:]
	To use debugging, the Build With Source option must be selected in the Preferences dialog before the file is compiled.

1. Open and compile a Source Code file (that contains at least one variable), if you have not already done so. The file must be successfully compiled before you can enter debug mode.
2. Choose Debug > Start Debugging to open the Watch Bar. If this option is disabled, make sure your Master Communications Port settings are set to connect to your Master Controller.
3. Right-click inside the Watch Bar to open the Watch Window context menu.
4. Click Add Variable to insert a new variable in the Watch Bar. A box appears in the window, with a cursor blinking in the Name column.
5. Type the syntax of the variable exactly as it is defined in the code and press the Enter key. The value of the specified variable appears next to the variable (in the Value column).
6. You can select different view formats for the Value by right-clicking on the line containing the variable/value, and clicking on Display in the Watch Bar context menu. This opens the Display sub-menu.

[bookmark: _Toc202156]Variables
Lesson Topics
· Data Types
· Behavior Types
· Scope

A variable represents a place to store data that will change as the program is executed. Think of a variable as a container, nearly anything can be placed in it. For example, an integer variable can represent any number from 0 to 65,535. An integer variable cannot hold a negative number. If one variable is subtracted from another, the result will always be positive. If you subtract a larger number from a smaller number, the result wraps around at 65,535. For example, 10-20 = 65,525.

NetLinx allows variables to be defined with several data types and data ranges. NetLinx can also define variables which hold large numbers, negative numbers, and decimal numbers.

	[image:]
	If you use too many Variables it can make your program very confusing, so use them wisely.

Here’s an example of a DEFINE_VARIBLE setup:

DEFINE_VARIABLE
non_volatile float fHvacTemp; // Single variables
volatile char sSerialBuffer[1Ø]; // Array variables
persistent _CamInfo uCameraPreset[8]; // Structure variables

When the system is turned off, NON_VOLATILE variables retain their values as long as there are working back up batteries. Resetting or initializing can be done manually in the DEFINE_VARIABLE or DEFINE_START sections of the program.

[bookmark: _Toc202157]Data Types

	Type
	Description
	Range

	CHAR
	Single byte values and character strings
	0 to 255 (8-bit)
'a', 145, $FE, 'The quick gray fox'

	INTEGER
	Default variable value to store values up to 65,535.
	0 to 65,535 (16-bit)

	WIDECHAR
	Wide character strings dealing with Unicode fonts that use 16-bit character codes and also most Far-eastern fonts
	0 to 65,535 (16-bit)
"'OFF',500"

	SINTEGER
	Signed integer values both greater than and less than zero
	-32,768 to 32,767 (16-bit)

	LONG
	Stores large integer values esp. greater than 65,535
	0 to 4,294,967,295 (32-bit)

	SLONG
	Signed large integer values less than -32,767 and greater than 32,767
	-2,147,483,648 to 2,147,483,647
(32-bit)

	FLOAT
	Stores signed floating point numbers to 7 places of precision
	-1.79769313x10^38 to 2.22507385x10^38 (32-bit)

	DOUBLE
	Stores signed large floating point numbers to 16 places of precision
	2.22E-308 to 1.79E308with 16 digits of precision (64-bit)

Behavior Types
The structure of a variable definition in DEFINE_VARIABLE is:
[NON_VOLATILE|VOLATILE|PERSISTENT|CONSTANT][<data type>]<variable name> [= <value>]

The NON_VOLATILE, VOLATILE, and PERSISTENT keywords specify what happens to a variable when the program is downloaded or after a system reset.
· NON_VOLATILE - A variable declared with the NON_VOLATILE keyword is stored in non-volatile memory. It will retain its value in the event of a system power down, but is reset to zero if the program is reloaded. Unless specified otherwise, all variables are stored in non-volatile memory.

· VOLATILE - A variable declared with the VOLATILE keyword is stored in volatile memory and reset to zero after either power-down or reload. Volatile memory is generally faster and more plentiful than non-volatile memory. For this reason, you should use the VOLATILE keyword when declaring large data arrays where persistence of the data is not a requirement.

· PERSISTENT - If a variable is declared with the PERSISTENT keyword, it is initialized to zero the first time the program is loaded but will retain its value after either power-down or reload.

If you initialize a VOLATILE variable in the DEFINE_VARIABLE section, the value of the variable is set every time the code is loaded or after a system reset. The variable initializes like it would in the DEFINE_START section. If you initialize a NON_VOLATILE variable within the DEFINE_VARIABLE section, the variable only initializes when the system is loaded, and it retains any changed values after system resets.

Variables can also be defined as constant variables. This declares a variable to be immutable (cannot change at run-time). The variable must be initialized as part of its declaration if this keyword is used. Since the DEFINE_CONSTANT section does not allow you to explicitly declare a constant's data type, using the CONSTANT keyword allows you to explicitly declare the data type of a constant, and to define constant values for structures and arrays of structures.

constant _TvPrst CHAN_5 = {'KXAS', 5};
constant sinteger ABS_ZERO = -273;

If the data type is omitted from the variable definition, the following defaults are assumed:
· Single variables are INTEGER type
· Arrays are CHAR type
When a NetLinx program has a persistent variable declared, subsequent downloads of new NetLinx programs containing the same persistent variable will retain the variable settings. By default, non-persistent variables are set to zero after a NetLinx program download. Persistence overrides this behavior by setting the variable in the newly downloaded program to be the same as it was before the download.

Typically, persistent variables are used for saving preset information. Suppose you have a system that contains several PTZ camera positioning systems, and that the user interface to the system allows the user to set the position of any of the cameras and record that position for recalling later. The position presets are stored in a non-volatile array variable so they are maintained during a power cycle. Without persistent variables, an update to the NetLinx program would zero out all of the presets the user had stored. With persistent variables, the new NetLinx program can be downloaded and all of the presets remain intact.

When a new NetLinx program is downloaded to the Master, the Master iterates through all nonvolatile variables from the new program looking for persistent ones. When it finds a persistent variable in the new program, it searches the old programs persistent variable space for the same variable. When it finds the same variable, the value of the new variable is set to the same value as the old variable. The Master identifies the same variable by verifying the following:

· Variable name
· Variable source location
· Variable type

Therefore, in order for persistence to function properly the name, type, and file location declared must be the same as the previously downloaded NetLinx program. If you changed any of the three, the new persistent variable will not be set with the old variable's value.
[bookmark: _Toc202159]Scope
Scope is a term used in reference to program variables that describe where in the program they can be accessed. There are two types:
· Local scope: a variable can only be accessed in the subroutine or method that it is declared. a variable declared within a subroutine, event, or function whose scope is limited to that subroutine or function.
· Global scope: a variable can be accessed anywhere in the program. Scope differentiates the two basic classes of NetLinx variables: a variable declared in the DEFINE_VARIABLE section; its scope extends throughout the module in which it is declared.

Local Variables
Local variables are restricted in scope to the statement block in which they are declared. A statement block is one or more NetLinx statements enclosed in a pair of braces, like the blocks following subroutines, functions, conditionals, loops, waits, and so on. Local variables must be declared immediately after the opening brace of a block but before the first executable statement.

define_function fnSubroutine (integer int1)
{
 local_var integer int2;
 (* body of subroutine *)
}

The scope of a local variable is restricted to the statement block in which it is declared. A local variable is either static or non-static, depending on whether it is declared as LOCAL_VAR or
STACK_VAR:
	[image:]
	A static variable maintains its value throughout the execution of the program, regardless of whether it is within scope of the current program instruction.

· The keyword LOCAL_VAR specifies a variable that is static. A static variable's value is initialized the first time the statement block in which it is declared is executed and retained after execution of the statement block has finished.
· The STACK_VAR keyword specifies a variable that is non-static. A non-static variable's value is re-initialized every time the statement block in which it is declared is executed. If neither the LOCAL_VAR nor the STACK_VAR keyword is specified, LOCAL_VAR is assumed.

button_event[dvTp,1]
{
 push:
 {
 local_var integer int2; // static (permanent)
 stack_var char array1[10]; // non-static (temporary)
 // statements
 }
}
LOCAL_VAR and STACK_VAR can be used interchangeably in any statement block except for waits. Only LOCAL_VAR variables may be declared inside a wait block.

	[image:]
	When using the debug tool, LOCAL_VAR are easily "seen" in the debug display.
STACK_VARs are not displayed in debug unless the code is paused manually or by setting a breakpoint.

A name assigned to a local variable must be unique within the statement block in which it is declared and any statement block enclosing that block. Therefore, non-nested statement blocks can define the same local variable name without conflict. For example:

define_function integer myFunc(integer nFlag)
{
 local_var integer nNumber;
 if (nFlag > 0)
 {
 local_var integer nNumber; // illegal declaration
 }
}
define_function integer myFunc(integer nFlag)
{
 if (nFlag > 0)
 {
		local_var integer nNumber;
 }
 else
 {
 local_var integer nNumber; // legal declaration
 }
}

The general form of a static local variable declaration is:

[LOCAL_VAR] [<type>] name

The general form of the non-static local variable declaration is:

[STACK_VAR] [<type>] name

Since non-static local variables are allocated on the program stack (a block of memory reserved for allocation of temporary variables), the keywords VOLATILE, NON_VOLATILE and PERSISTENT do not apply.

Global variables
Global variables are defined in the DEFINE_VARIABLE section of any program module. For example:

DEFINE_VARIABLE
constant integer maxLen = 64;
non_volatile char sErrorMsg[MAX_LEN] = 'No errors were found.';
volatile integer nNumberArray[] = {100, 200, 300};

A global variable is accessible throughout the module or program in which it is defined. Global variables retain their value for as long as the program runs. They may retain their value after powering down or reloading the system depending on the variable's persistence attributes (VOLATILE, NON_VOLATILE, and PERSISTENT).

	[image:]
	Modules are re-usable NetLinx sub-programs that can be inserted into the main program. The main program is also a module. Refer to the NetLinx Modules section for information on program modules.

If a local variable shares the same name as a global variable, the local variable always takes precedence. The general form of a global variable definition is:

[NON_VOLATILE | VOLATILE | PERSISTENT | CONSTANT] [<type>] name [= <value>]

Code Examples:
These examples illustrate non-volatile applications for presets at startup, and tracking whether or not new code has been loaded.

Non-Volatile
Variables that remember their value through a system power cycle but lose it on a new code download.

Possible applications:
Current A/V Source Selected
Current TV/DSS channel selected Device States (Screen Up or Down, etc.)

Example 1:
DEFINE_VARIABLE
non_volatile integer nCurrentSource;
button_event[dvTP_Main,nSourceButtons]
{
 push:
 {
 nCurrentSource = get_last(nSourceButtons);
 	fnSystemOn(nCurrentSource);
 }
}

Example 2:

DEFINE_VARIABLE
non_volatile integer nRspEnabled;
DEFINE_EVENT
data_event[dvIpTV]
{
 online:
 {
if (!nRspEnabled) // If maintain serial power is not enabled
{
 send_string dvIpTV, "'RSP01',$0D"; // Enable rsp mode
 on[nRspEnabled]; // Set to on once command is sent
}

 lPollTime = 5; // Set poll time
 on[nOk2Poll]; // Enable polling of devices
}
}

[bookmark: _Toc202160]Waits
Lesson Topics
· Naming Waits
· Types of Waits
· Nesting Waits
· Pausing/Restarting Waits
· Cancelling Waits

Wait instructions allow delayed execution of one or more program statements. When a wait statement is executed, it is added to a list of currently active wait requests and the program continues running.
All variables inside the wait are evaluated at the time the wait is executed, not when it is added to the queue.

[bookmark: _Toc202161]Naming Waits
Supplying a unique name (‘in string literal form’) to the wait statement allows the wait to be identified for purposes of canceling, pausing, or restarting the wait request. The name must not conflict with previously defined constants, variables, buffers, or subroutines. Unlike other NetLinx identifiers, wait names may contain spaces because they are string literals.

If a wait instruction that uses a name currently in the wait list is encountered, the new wait instruction is thrown away so as not to conflict with the one currently in progress. If this feature is not desired, the current wait must be canceled before processing the new request. For information, refer to the Canceling Waits sub-section below.

[bookmark: _Toc202162]Types of Waits
Types of Wait statements include:
· Timed Waits have an associated parameter that indicates an amount of time that must elapse before the associated wait instruction(s) are to be executed.
· Conditional Waits require that a specified condition be met before the instructions are executed.
· Timed Conditional Waits have a timeout parameter; if the condition is not met before the specified time elapses, the wait request is canceled.

	Types of Waits

	Timed waits
	The syntax for Timed Waits is:
wait time ['<name>']
{
 (* wait statements *)
}
Parameters:
· time: A constant or variable indicating the wait time. Time is expressed in 1/10th second units. The statement below specifies a wait time of 5 seconds for the wait named FIRST WAIT. This parameter should not be confused with the keyword TIME.
· name: The name to assign to the wait. This name must be a literal string. The wait name is optional, although unless a wait is named it cannot be individually canceled, paused, or restarted.
If greater precision is required, the time parameter can be expressed as a decimal, for example 0.1 to specify a wait time of 1/100th of a second. The range is from
0.1 to 0.9. (Used in NetLinx only.)
wait 50 'First Wait'
{
 (* wait statements *)
}

	Conditional waits
	WAIT_UNTIL is a conditional Wait request. The WAIT_UNTIL syntax is:
WAIT_UNTIL <condition> ['<name>']
{
 (* wait statements *)
}
Parameters:
· <condition>: Any single or compound expression that can be evaluated as a logical expression. The Wait statements are executed if and when the wait condition becomes True.
· <name>: The name to assign to the Wait. This name must be a literal string. The Wait name is optional, although unless a Wait is named it cannot be individually canceled, paused, or restarted.

	Timed conditional waits
	TIMED_WAIT_UNTIL is a timed conditional Wait request. The syntax is:
TIMED_WAIT_UNTIL <condition> timeout ['<name>']
{
 (* wait statements *)
}
Parameters:
· <condition>: Any single or compound expression that can be evaluated as a logical expression. The Wait statements are executed if and when the Wait condition becomes true.
· timeout: A constant or variable indicating the timeout value in 1/10th seconds. If the Wait condition is not met within the time indicated by this parameter, the Wait is canceled, in which case no wait statements are executed.
· name: The name to assign to the Wait. This name must be a literal string. The Wait name is optional, although unless a Wait is named it cannot be individually canceled, paused, or restarted.

[bookmark: _Toc202163]Nesting Waits
The wait time for a nested wait is the sum of its own wait time, plus that of the enclosing waits. In the example below, SECOND WAIT occurs 0.5 seconds after FIRST WAIT is executed, or 1.5 seconds after FIRST WAIT is added to the wait list.

wait 10 'First Wait'
{
 (* First Wait statements *)
 wait 5 'Second Wait'
 {
 (* Second Wait statements *)
 }
}

To execute the inner wait of a nested conditional wait, the conditions must be met in the order specified (condition 1, then condition 2) but not necessarily at the same time.

wait_until <condition 1> 'First Wait'
{
 (* First Wait statements *)
 wait_until <condition 2> 'Second Wait'
 {
 (* Second Wait statements *)
 }
}
[bookmark: _Toc202164]Pausing and Restarting Waits
The following commands relate to pausing and restarting waits.
	Pausing and Restarting Waits

	PAUSE_WAIT
	PAUSE_WAIT puts a scheduled wait on hold. The wait being paused is identified by the parameter name. The wait timer stops counting down until it is resumed with a RESTART_WAIT command. Here's a syntax sample:
PAUSE_WAIT '<name>'

	RESTART_WAIT
	RESTART_WAIT resumes the countdown for a wait suspended with PAUSE_WAIT. The wait to be restarted is identified by the parameter name.
RESTART_WAIT '<name>'

	PAUSE_ALL_WAIT & RESTART_ALL_WAIT
	PAUSE_ALL_WAIT and RESTART_ALL_WAIT commands are used to pause or
restart all scheduled waits, regardless of whether or not they are named. They have no parameters.
PAUSE_ALL_WAIT
RESTART_ALL_WAIT

Canceling Waits
	Canceling Waits
	

	CANCEL_WAIT /
CANCEL_WAIT_UNTIL
	CANCEL_WAIT and CANCEL_WAIT_UNTIL remove the wait specified by name from the appropriate wait list. The syntax is:
CANCEL_WAIT '<name>
CANCEL_WAIT_UNTIL '<name>'

	CANCEL_ALL_WAIT /
CANCEL_ALL_WAIT_UNTIL
	CANCEL_ALL_WAIT and CANCEL_ALL_WAIT_UNTIL cancel all waits (named or unnamed) from the appropriate wait list. The syntax is:
CANCEL_ALL_WAIT
CANCEL_ALL_WAIT_UNTIL

Using Waits – Limitations
· References to STACK_VAR variables are not allowed within waits (STACK_VAR are temporary variables that cease to exist when the block in which they are declared is exited).
· Variable copies are made of functions and subroutine parameters. This can have speed/ execution penalties.
· A RETURN is not allowed within a WAIT within functions and subroutines.
· A BREAK or CONTINUE cannot appear within a WAIT if it takes execution out of the scope of the WAIT.
· The code within a WAIT cannot reference a function or subroutine array parameter whose bounds are unspecified.

Code Examples:
A very simple example of WAIT.
button_event[dvTP_VCR,PWR_ON]
{
 push:
 {
 if (![dvVCR,POWER_FB]) //IF VCR POWER IS OFF
 {
 pulse[dvVCR,POWER]; //TURN ON VCR POWER

 wait 50 'Power On Delay' //WAIT 5 SECONDS FOR VCR TO COME ON
 {
 pulse[dvVCR,PLAY]; //PLAY THE VCR
 }
 }
 else //VCR IS POWERED ON
 {
 pulse[dvVCR,PLAY]; //PLAY THE VCR IMMEDIATLEY
 }
 }
}
This example illustrates Nested Waits-each wait uses a small independent value rather than summing all the previous values together.

Example: - Nested WAIT
if (RESET_FLAG1 && RESET_FLAG2)
{
 fnAM8SetGain(AM8_ADDRESS, 1, 24); // SET GAIN OF CHAN 1 TO 1/4 FULL

 wait 2
 {
 fnAM8SetGain(AM8_ADDRESS, 2, 24); // SET GAIN OF CHAN 2 TO 1/4 FULL
 		
 wait 2
 {
 fnAM8SetGain(AM8_ADDRESS, 3, 24); // SET GAIN OF CHAN 3 TO 1/4 FULL

 wait 2
 {
 fnAM8SetGain(AM8_ADDRESS, 4, 24); // SET GAIN OF CHAN 4 TO 1/4 FULL
 	
 wait 2
 {
 fnAM8SetGain(AM8_ADDRESS, 5, 24); // SET GAIN OF CHAN 5 TO 1/4 FULL
 }
 }
 }
 }
 }

[bookmark: _Toc202166]Conditionals
Lesson Topics
· IF Statement
· IF…ELSE Statement
· SELECT…ACTIVE Statement
· SWITCH…CASE Statement

Conditional Expressions
A conditional expression is used to tell the NetLinx program whether or not to execute a particular statement or group of statements. The program uses conditional expressions to judge certain conditions before continuing.

A conditional expression can only have one of two results: true or false. Any non-zero value is true, while a zero value is false. When the NetLinx program evaluates a conditional expression, it assigns a 1 for a true result, and a Ø for a false result.
[bookmark: _Toc202167]
IF Statement
The most common conditional expression in a NetLinx program is the IF keyword. Every IF statement must be followed by a conditional expression enclosed in parentheses. This provides the beginning of a conditional execution of statements, as shown in this example:

if (conditional expression)
{
 (Statement 1)
}
If the conditional expression is true, the program executes Statement 1 and continues with whatever statements follow. If the conditional expression is false, Statement 1 is ignored. If Statement 1 is a compound statement, it must be enclosed in braces.

[bookmark: _Toc202168]IF...ELSE Statement
If the conditional expression is false, the program executes a function independent of the True conditional expression.

For Example:

if (conditional expression)
{
 (*Statement 1*)
}
else
{
 (*Statement 2*)
}

If the conditional statement is true, then Statement 1 is executed and Statement 2, underneath the ELSE statement, is ignored. If the conditional statement is false, then Statement 2 is executed. Statement 1 is automatically ignored if the expression is false.

Nesting IF...ELSE Statements
Nesting IF...ELSE statements allows an essentially unlimited number of paths. The program stops at the first true conditional expression and executes the following statement. After completion, it goes on to the rest of the program. For example:

if (conditional1)
{
 (* STATEMENT(S) IF CONDITIONAL1 IS TRUE *)
}
else
{
 if (conditional2)
 {
 (* STATEMENT(S) IF CONDITIONAL2 IS TRUE *)
 }
 else if (conditional3)
 {
 (* STATEMENT(S) IF CONDITIONAL3 IS TRUE *)
 }
 else
 {
 (* STATEMENT(S) IF NONE OF THE CONDITIONALS ARE TRUE *)
 }
}

A last ELSE statement can be placed at the end as a default statement. Then, if the program does not find a true IF statement, it executes the final ELSE statement. This last ELSE statement is not necessary.

	[image:]
	If too many IF...ELSE IF statements are chained together, a run-time error could occur.

[bookmark: _Toc202169]The SELECT...ACTIVE Statement
The SELECT...ACTIVE statement makes IF...ELSE IF nesting easier, by allowing placement of several branches from one path.

This is the format:

select
{
 active (condition 1):
 {
 (*STATEMENT 1*)
 }
 active (condition 2):
 {
 (*STATEMENT 2*)
 }
 active (condition 3):
 {
 (*STATEMENT 3*)
 }
}

Each one of the conditional expressions is evaluated in order, until one is found to be true. The statements associated with the true expression are then executed, and the path flows to the statements following the closing brace. Using SELECT...ACTIVE is preferable to using multiple IF...ELSE IF statements since it uses less memory, and runs faster.

When using the IF...ELSE set of statements, the code following the ELSE is the default statement. If the condition of the IF is false, then the default statement following the ELSE is executed. If none of the conditions in a SELECT...ACTIVE statement are true, no code of any ACTIVE statement will be executed, since SELECT...ACTIVE has no default statement.

The following example shows how to create your own default statement for a SELECT...ACTIVE.

select
{
 active(CONDITION 1):
 {
 (*statement 1*)
 }
 active(CONDITION 2):
 {
 (*statement 2*)
 }
 active(CONDITION 3):
 {
 (*statement 3*)
 }
 active(1):
 {
 (*default statement*)
 }
}

Here, the last ACTIVE will always be true, and will execute only if all of the conditions of the previous ACTIVEs are false. This makes the last ACTIVE's statement the default statement.

[bookmark: _Toc202170]SWITCH…CASE
The SWITCH…CASE statement provides a programming structure for selective execution of code blocks based on the evaluation of a single condition. The value of the SWITCH expression is tested against each CASE value (numeric constant or string literal). If a match is found, the statements associated with the CASE are executed. All other CASE statements are ignored. If no match is found, the DEFAULT case statements (if any) are executed. The SWITCH expression is evaluated only once.

switch (<expression>)
{
 case <numeric constant or string literal>:
 {
 (* statements for case 1 *)
 }
 case <numeric constant or string literal>:
 {
 (* statements for case 2 *)
 }
 default:
 {
 (* statements for the default case *)
 }
}

Regarding SWITCH...CASE statements:
· Only the statements associated with the first case that matches the value of the expression are executed.
· If no CASE matches the SWITCH expression, then the statements under the default case (if implemented) are executed.
· All cases must be unique.
· Braces should be used to bracket the statements in a case. They are required only if variables are to be declared within the case.
· The BREAK statement applies to the SWITCH. It takes execution to the end of the SWITCH. Unlike the C language, cases do not fall through to the next case if a break is not used but BREAKs are still allowed between cases.

The syntax is:

switch (var)
{
 case 1:
 {
 (*statements go here*)
 break;
 }
 case 3:
 {
 (*statements go here*)
 break;
 }
 case 5:
 {
 (*statements go here*)
 break;
 }
 default:
 {
 (*statements go here*)
 break;
 }
}

More Conditional Operators
The previously discussed IF and IF...ELSE statements could only base the program flow on one condition. However, you can combine two of these conditions with a conditional (or relational) operator. The conditional operator sets the conditions for the end result.

The conditional operators used in the NetLinx language are AND (&&), OR (||), XOR (^^), NOT (!), and EQUAL TO (==).

If the end result of the conditional expression is true, the program continues with Statement 1. If the end result is false, the program ignores Statement 1.

Reading a Boolean Expression Table
In most conditional expressions, the possible conditions of two statements are analyzed to achieve one result. These results can be visualized using Boolean expression tables, as shown in FIG. 1.

FIG. 1 Pictorial explanation of the Boolean expression table for the operator AND.

	[image:]
	Boolean Expressions / Operators and Conditional Expressions / Operators are one in the same.

The following text formula can also be followed to find that result:

If <STATEMENT 1> is <its condition (true or false)> <Boolean operator>
<STATEMENT 2> is <its condition>, then the result of the expression is <result of statement conditions>.

The result is found by basing the conditions of the statements against specific rules set by the Boolean operator:

AND (&&) 	Both statements must be true for the result to be true.
OR (||)		At least one of the conditions must be true for the result to be true.
XOR (^^)	 Only one statement can be true for the result to be true.
NOT (!) 	If the statement is true, the result is false. On the contrary, if the condition is false, the result is true. This expression uses only one statement.

For example, assume that it has been previously defined that NUM1 = 5 and NUM2 = 3. Insert the variables from the example into the text formula:

If NUM1 == 5 is true and NUM2 == 4 is false, then the result of the expression is false.

The statement would have been true if NUM2 had been equal to 3, because in an AND expression both statements must be true as shown in FIG. 2.

FIG. 2 An example of how a Boolean expression table is used to compare multiple conditions.

The Boolean expression tables in FIG. 3 are a quick reference guide for the result of a conditional expression.

FIG. 3 Sample Boolean truth table results

Code Examples:

if (a == 1) // If this is true
{
 // Do domething and skip the rest
}
else if (a == 2) // Check this if the first condition is false, and if this is true
{
 // Do something else
}
else
{
 // Do this if the other conditions are not true
}

select
{
 active (a == 1):
 {
 // Just like the if above
 }
 active (a == 2):
 {
 // Just like the else if above
 }
 active (1):
 {
 // Just like the else above
 }
}
Conditionals
Conditionals
[image: Logo-HPU_WebHeaderONLY][image: 451986331]a

1
A
MX Programmer I & II

86
AMX Programmer I & II

[image: College_of_AMX_stacked_whit]	

 3000 RESEARCH DRIVE, RICHARDSON, TX 75082 | 800.222.0193 | 469.624.8000 | 469.624.7153 fax | www.amx.com

Functions and Subroutines
Lesson Topics
· Subroutines Defined
· DEFINE_CALL Subroutines
· DEFINE_FUNCTION Subroutines
· Calling Parameters

[bookmark: _Toc202179]Subroutines Defined
A subroutine is a section of code that stands alone and can be called from anywhere else in the program. The subroutine name follows the DEFINE_CALL or DEFINE_FUNCTION keyword. There are certain restrictions for subroutine names:
· They cannot be previously defined constants or variables.
· They cannot be names that have already been assigned to VARIABLEs or WAITs.
Subroutines must be defined before they can be used. For this reason, DEFINE_CALLs and DEFINE_FUNCTIONs are usually found right before the DEFINE_START section of the program. For example:

DEFINE_VARIABLE
volatile integer nLightPreset; // Current lighting preset

define_function fnPresetLights(dev dvDPS, integer nNewPreset)
{
 pulse[dvDPS,nNewPreset];
 nLightPreset = nNewPreset;
}

DEFINE_START
fnPresetLights(dvLights, LIGHT_FULL);

DEFINE_EVENT
button_event[dvTP,7] // Lights off
{
 push:
 {
 fnPresetLights(dvLights, LIGHT_OFF);
 }
}

DEFINE_PROGRAM
[dvTP,7] = (nLightPreset == LIGHT_OFF);
	[image:]
	Spaces in the subroutine name are allowed, since it is a string literal. The subroutine's code must be enclosed in braces. Regardless of how long the subroutine is, it must be in this format.

DEFINE_CALL Subroutines
DEFINE_CALL is intended to run segments of code that are repeated throughout the program, but don't require a return value. For example, this DEFINE_CALL creates a macro to lower a screen, turn on the projector, and set the lights to Preset 1. The subroutine executes three commands and no values are returned to the program.

define_call 'Presentation Macro'
{
 pulse[dvRelay,SCREEN_DOWN];
 send_string dvProj, "'PON',$0D,$0A";
 send_string dvLights, "'1B',$0D";
}

The DEFINE_CALL is the standard method provided by NetLinx for defining subroutines.
define_call '<subroutine name>' [(Param1,Param2,...)]
{
 (* statements *)
}
where (Param1, Param2, ...) refers to a comma-separated list of <datatype><variable> pairs. For example, "INTEGER size" would be one pair.

DEFINE_CALL names must not conflict with previously defined constants, variables, buffers, or wait names. Unlike identifiers, DEFINE_CALL names are case sensitive.

A subroutine may accept parameters. To do this, each parameter and its type must be listed within the set of parentheses to the right of the subroutine name, as shown below:
define_call 'Read Input'(char sBuffer[])
{
}
To invoke a user-defined subroutine, use the CALL keyword plus the name of subroutine and any required calling parameters.

call 'Read Input'(sBuf1);

In NetLinx, DEFINE_CALL supports the RETURN statement (as shown in the following example). Although return values are not supported it simply exits the subroutine.

define_call 'Read Input'(char sBuffer[])
{
 if (length_array(sBuffer) == 0)
 {
 return // Exit subroutine
 }
 (* read input *)
}

DEFINE_FUNCTION Subroutines
A function is similar to a DEFINE_CALL, but is intended for use either standalone or in-line as an expression, is infinitely more powerful, and generally preferred over a CALL. They allow for recursion, can be declared in any order, and can instantiate. Instead of requiring a string literal for its name, it requires a name that follows the rules for naming constants and variables. This eliminates the need for using the CALL keyword to invoke the subroutine. DEFINE_FUNCTION subroutines also differ from DEFINE_CALL by allowing values to be returned using the RETURN statement (see below).

	[image:]
	The return type may only be one of the 8 intrinsic types (see Data Types). Structures and other user-defined types may not be returned.

The general form of a DEFINE_FUNCTION declaration is shown below:

define_function [<return type>] fnName ([Param1,Param2,...])
{
 //statements
}
	[image:]
	In syntax with a ([]), the () are NOT OPTIONAL but [] are optional.

An example of a DEFINE_FUNCTION declaration is:

define_function integer fnReadBuffer (char sTempBuffer[], integer nBuffSize)
{
 local_var integer bytes;
 //function statements
 return bytes;
}

The DEFINE_FUNCTION subroutine can be called as a single programming statement. For example, the following syntax:

fnReadBuffer(sBuffer, nBuffSize);
can be used in an assignment statement such as:

nCount = fnReadBuffer(sBuffer, nBuffSize);

or as part of an expression such as:

if (fnReadBuffer(sBuffer, nBuffSize) > 0)
{
 //statements
}

The rules pertaining to calling parameters are the same for DEFINE_FUNCTION as they are for DEFINE_CALL subroutines. The parameter list must appear in parentheses to the right of the function name. If the function has no calling parameters a set of parentheses must still be included. For example:
fnMyFunc(); // Calling a function with no parameters
The return type may be omitted, as an alternate way of defining a subroutine. In this case the function cannot be used as part of an expression or in an assignment statement.

DEFINE_FUNCTION also allows the use of the RETURN keyword that serves two purposes:
· To return prematurely from a function. 
· To return a value from a function.

The format of the return statement is:
return [<return value>];

If a return statement is encountered anywhere in the function, execution of the function is terminated immediately and the value (if any) specified as the <return value> is returned to the caller.

A function that returns a value through the RETURN keyword must be declared with a return type. Conversely, a function that is declared without a return type cannot return a value.

	[image:]
	The return type may only be one of the 8 intrinsic types (see Data Types). Structures and other user-defined types may not be returned.

In the example below, fnGetBufferSize() returns an unsigned 16-bit integer, buffSize. The return type is indicated before the DEFINE_FUNCTION keyword.

define_function integer fnGetBufferSize()
{
 local_var integer nBuffSize;

 nBuffSize = 42;
 return nBuffSize;
}

To call this function and to retrieve the RETURN value, use the following syntax:

nBuffSize = fnGetBufferSize();

where nBuffSize is declared to be of type INTEGER.

Even if a function returns a value, it is not necessary to assign the return value to a variable. Both forms of the following call are valid. In the second case, the return value is simply thrown away.

nCount = fnReadBuffer(sBuffer, nBuffSize);
fnReadBuffer(sBuffer, nBuffSize); // return value is ignored

Calling Parameters
Parameters may be passed to any NetLinx call or function subroutine. Calling parameters are simply variables or constants that originate from the caller and are received by the function or subroutine being invoked.

The NetLinx compiler passes all variables by reference. This means that the variable the subroutine operates on is the same variable the caller passed. Any change made to a variable passed as a calling parameter updates the value of the variable from the perspective of the caller. You can take advantage of this pass by reference feature to return an updated value through a calling parameter rather than as the return value.

Constants, on the other hand, are passed by value. When this happens, a copy of the parameter is delivered to the subroutine. Any change made to the variable representing the constant is lost once the function or subroutine finishes.

Function and subroutine declarations must include the type and name of each parameter expected. If the type is omitted, the default type is assumed - arrays are CHAR type and non-array parameters are INTEGER.
To specify an array as a function or subroutine parameter, one set of brackets for each array dimension must follow the variable name, as shown in the following example:

define_function fnProcessArray(char cArray[][])
{
 //body of subroutine
}

The parameter array is declared to be a 2-dimensional array by including two sets of brackets after the name. For compatibility with existing programs, the array dimensions may be specified inside the brackets. These dimensions are not required and are ignored by the compiler. The NetLinx interpreter will do bounds checking on the array and generate a run-time error if the array bounds are exceeded.

When calling a subroutine or function that takes an array as one of its parameters, pass only the name of the array as the calling parameter, as shown below:

volatile char cArray[10][20];
fnProcessArray(cArray);

If dimensions are specified in the call or function statement, the compiler will interpret that as specifying a subset of the array. For example, suppose array were defined as a 3-dimensional array. The third table of that dimensional array could be passed to fnProcessArray() as follows:

volatile char cArray[5][5][10];
fnProcessArray(cArray[3]);

Code Examples:

DEFINE_CALL Example

define_call 'Shutdown'
{
 pulse[dvRelays,SCREEN_UP];
 pulse[dvProj,PWR_OFF];
 pulse[dvVCR,STOP];
 send_string dvDVD, "$02,'^STPc 81',$03";
 send_string dvCD, "cdCommands[STOP]";
 wait 600 'Exit Time'
 {
 pulse[dvLights,ALL_OFF];
 }
}

In the main program, it looks like this:

DEFINE_EVENT
button_event[dvTP,255] // Initiate manual shutdown sequence
{
 push:
 {
call 'Shutdown';
 }
 }

 timeline_event[tlTimeOfDay]
 {
 if (time == '08:00:00')
 {
 call 'Shutdown';
 }
 }

DEFINE_FUNCTION with RETURN value. DEFINE_FUNCTION returns a value unlike DEFINE_CALL. Also illustrated is the shorcut x++.

(* DEFINE SUBROUTINE SECTION *)
define_function integer calcTotalReps()
{
 local_var integer nLoop;

 nTotalReps = 0;

 for (nLoop = 1; nLoop <= uBoardInfo.nNumOfAgencies; nLoop++)
 {
 nTotalReps = (nTotalReps + uAgencyInfo[nLoop].nNumberOfReps);
 }

 uBoardInfo.nNumOfMembers = nTotalReps; //Save total reps into structure

 return nLoop; // Return number of times FOR loop repeated
}

[bookmark: _Toc202182]Modules
Lesson Topics
· Defining a Module
· Using a Module in a Program

Modules are a method for reusing code in a NetLinx system. Modules provide some of the same functionality as System Calls and Include Files, but modules are unique in a number of ways.

Like Include files, modules can define their own variables, subroutines, events and mainline. But modules are self-contained and the variables and subroutines defined within the module cannot be accessed by the main program.

Modules can interact with the program in a number of different ways. Modules have parameters that can be used to pass information into and out of the module. Modules can also pass channels, events, strings and commands between the module and the main program.

Most times the functionality of the module is transparent to the program. For example, in a projector module, the device number of the projector and a virtual device are passed to the module. In the program, all events and commands are programmed for the virtual device. The module handles all of the interaction with the actual 3rd party device.

Modules can be used to provide a standard interface to a variety of similar devices. Within the program, the devices are programmed using the same channels and SEND_COMMANDs. The different modules handle the channels and SEND_COMMANDs, and control the devices according to their own protocols.

The ability to reuse code is a desirable goal in software development; however, code reuse takes careful planning and organization. NetLinx provides tools such as functions and modules to promote reusability. Modules are NetLinx sub-programs designed to be "plugged into" a main program.

Defining a Module
The MODULE_NAME entry on the first line of the file defines the module. The syntax is:

MODULE_NAME = '<module name>' ([<parameter list>])

The MODULE_NAME entry identifies the file as containing a NetLinx or Duet module, as opposed to a standard NetLinx source code file. The module name is any valid string literal not to exceed 64 characters. A file can contain only one module and the file name must be the same as the module name with the addition of the ".AXS" or “.JAR” extension.

Module parameters behave exactly like subroutine parameters; the parameter list is optional. The value for each parameter is set either by the main program or another module. If the value of a parameter is changed, both the main program and the module see the change.

	[image:]
	Constants and expressions cannot be used as arguments in the parameter list.

All parameters to a module must be one of the intrinsic types: CHAR, INTEGER, SINTEGER, LONG, SLONG, FLOAT, DOUBLE, DEV, DEVCHAN or DEVLEV. Also, any array of any of the above types can be used.

Using a Module in a Program
To use a module in a program, you must declare it using the DEFINE_MODULE keyword. This tells the NetLinx compiler to add the module to the program, effectively merging the module's event handling and mainline code with the containing program (or module). In other words, the program will have one event table and one mainline routine consisting of code from the main program and all modules declared using the DEFINE_MODULE statement.

Modules can contain declarations to other modules, provided that no circular references are involved (if module A declares module B that contains a reference to another module with a reference to A, that is a circular reference.) However, because different instances of the same module must not be separated by instances of a different module, it is highly recommended that you do not declare modules from within other modules - if you have multiple declarations of the parent module they will then be separated by the declarations of the child module.

Like System Calls, each module is going to have a list of its own parameters. The modules parameters must be either defined as devices or as variables. You cannot hard code values into the parameters or pass constants.

Modules are defined between the DEFINE_START section and the DEFINE_EVENT section. Do not place DEFINE_START statements after the DEFINE_MODULE statements.

The DEFINE_MODULE statements follow the format shown below:

DEFINE_MODULE ’module name’ mod_inst (param1, param2,...)

Modules can be distributed as .AXS files, as compiled token files, or as compiled .JAR files. In any case, compiling your program will incorporate the module into your program. Modules should be documented to tell what parameters need to be defined, what values need to be passed and how any devices or virtual devices need to be programmed in the main program.

FIG. 1 demonstrates how a NetLinx module is incorporated into a main program. In this example, the main program has no event table or mainline code.

FIG. 1 Mainline and Event Table Organization

Levels
Lesson Topics
· Introduction to Levels
· Creating Levels
· Using Levels
· Using Bargraphs
· DEFINE_CONNECT_LEVEL

Introduction to Levels
Devices such as touch panels, Enova switchers, and power distribution units use levels to interface with the outside world. Levels are values related a numerical range on an AMX device. Several AMX panels (FIG. 1) have bargraph displays capable of displaying a level.

FIG. 1 TPD4/ G4 Panel showing levels
Levels are used:
· To represent the current gain on a volume device
· To represent the dimming level of a lighting load
· To represent the current position or location of a Camera system (Pan/Tilt/Zoom/Focus)
·
An input/output (I/O) channel is usually digital in nature; that is, it is always either in an ON or OFF state. However, several devices, such as the volume controls and lighting systems, have analog input and/or output capabilities. An analog input or output may have many different states. Devices using analog I/O internally store the values relating to the state of each of these analog inputs and outputs; these values are called levels. On a volume controller, levels relate to the current volume state. Levels can be used to tell a pan/tilt controller where to position a camera, or tell a voltage generator the amount of voltage to generate.

For conceptual purposes, imagine that a volume controller has two volume knobs: one for the left speaker and one for the right, as shown in FIG. 2 on the next page. Each knob has a value range from 0 to 255. These knobs represent the two levels present in the volume controller. When a level is discussed in the text, it is usually referring to the value of one of these imaginary knobs.

80
135
Level 1
Level 2
0
255
0
255
Level Values

FIG. 2 The imaginary knobs. The knob is the level, which can have a range of values.

Level Keywords
Level keywords that you can use in an AMX program for volume control or lighting control are described below:

	Level Keywords
	

	CREATE_LEVEL
	Reads a level from an AMX device that supports levels. Syntax:
CREATE_LEVEL device, level number, variable
CREATE_LEVEL requires three parameters:
· The device from which to read the level.
· The level of the device to read (some devices have many different levels).
· The variable in which to store the level value.
This keyword creates an association between the specified level of the device and the specified variable. During the execution of a program it continually updates the variable to contain the value of the level with which it is associated. Since this association only needs to be done once, CREATE_LEVEL is only allowed to appear in the DEFINE_START section of a program.
When using CREATE_LEVEL, the master is continually keeping the variable value updated.
· A total of 8 levels are available.
· Muted levels contain a variable of 0.
· Maximum level available is 255.

	SEND_LEVEL
	Sends a value to a specific level of a specific device. Syntax:
send_level device, level number, level value

	DEFINE_CONNECT_LEVEL
	All level connections are listed underneath the DEFINE_CONNECT_LEVEL header. Syntax:
DEFINE_CONNECT_LEVEL (device 1, level number 1, device 2,level number 2, ...)
The section inside the parentheses represents a single connection. All levels listed in the connection will follow each other. If any one level changes, all others will change to match it. Any number of levels may be supported per connection, and there is no limit to the number of connections. The best location for this definition section is immediately following the DEFINE_VARIABLE section.

	COMBINE_LEVELS
	This keyword connects a single device-level array (DEVLEV[]) to a DEVLEV array. Any element in a DEVLEV array appears to come from the virtual device-level representing the group, and output to any element in a DEVLEV array is directed to all elements in the group.
COMBINE_LEVELS (DEVLEV VDLSET, DEVLEV[] DLSETS)
Parameters:
· VDLSET: Virtual device-level sets; each element represents one device-level combine group.
· DLSETS: Device-level sets containing the device-level pairs to combine.
Corresponding elements in each set are combined with the corresponding element in the virtual device-level array.

	UNCOMBINE_LEVELS
	This keyword undoes the effect of COMBINE_LEVELS. All combines related to the specified virtual device-level are disabled.
SLONG UNCOMBINE_LEVELS VDL
Parameters:
VDL: The virtual device-channel passed to COMBINE_LEVELS Result:
0: Operation was successful
-1: Invalid virtual device-level
Result = COMBINE_LEVELS VDL, DLSetResult =
UNCOMBINE_LEVELS VDL

Creating Levels
Most AMX devices have up to eight levels which can contain values from 0 to 255.

	[image:]
	Some devices have level ranges other than 0 to 255, but the programming principles and examples in this section still apply.

Level values can automatically be stored in a global variable for later use. To read a level from an AMX device that supports levels, use the keyword CREATE_LEVEL. Here is the syntax:

CREATE_LEVEL requires three parameters:
· The device from which to read the level.
· Which level of the device to read (some devices have many different levels).
· The variable in which to store the level.

This keyword creates an association between the specified level of the device and the specified variable. Your program will continually update the variable to contain the value of the level with which it is associated during its execution. Since this association only needs to occur once, this keyword is only allowed to appear in the DEFINE_START section of your program.

	[image:]
	Using LEVEL_EVENTS bypasses the CREATE_LEVEL process and is generally considered to be best practice.

Using Levels
Reading Levels
When a level is associated with a variable using CREATE_LEVEL, the Master continually keeps the variable updated with the value of that level. LEVEL_EVENTs are also generated any time there is a change in a level value.
· AXlink devices have up to 8 levels per device, and their values typically range from 0 to 255 (8 bit resolution)
· Some Input levels range from 0 to 1024 (10 bit resolution)
· NetLinx devices can have more levels and greater data ranges A Preset is a level saved for later retrieval.
· When presets are recalled, the level returns to the preset value.
· Presets are generally recalled using a SEND_COMMAND.

Making a Preset
An example would be giving a Volume Preset button a dual role.

DEFINE_EVENT
button_event[dvTP,20] // Volume preset 1
{
push:
{
to[button.input]; // Momentary button feedback
off[dvVol,VOL_MUTE]; // Un-mute volume
}
hold[20]: // Store preset
{
nVolPreset1 = nCurrentVol;
}
release: // Recall preset
{
 send_level dvVol, 1, nVolPreset1;
}
}
Result of this program:
· If the button is pressed for less than two seconds, it sends a preset level to the volume controller.
· The SEND_LEVEL sets the level of the controller to the previously saved level in nVolPreset1.
· If the button is held two seconds, the current level is stored in the nVolPreset1 variable.

Using Bargraphs
The SEND_LEVEL keyword is used to update a level in a device. To continuously display the current level of the volume card on the Touch Panel's bargraph, use the SEND_LEVEL keyword. Here is the syntax:

send_level device, level number, value;

Assume your bargraph display on the Touch Panel has level number 1. To keep the display updated continually, add the following line to a LEVEL_EVENT in a NetLinx program:

level_event[dvVol,1]
{
 send_level dvTP, 1, level.value;
}
This code makes sure that the bargraph always reflects the value of level number 1 of the volume controller. As the volume ramps up, VOL_LEVEL increases and the bargraph fills. As the volume ramps down, VOL_LEVEL decreases and the level indicated on the bargraph also decreases. Since both volume levels are ramping together, you only have to track one of them for the bargraph.

FIG. 3 G4 Touch Panel with a volume bargraph.
DEFINE_CONNECT_LEVEL
A unique feature of Touch Panels is to assign an “active” property to a bargraph so you can touch and slide it to raise or lower the level. The level tracks the movement of your finger. To simplify this you can set up a connection between the bargraph and the volume level. This is the function of the DEFINE_CONNECT_LEVEL keyword.

DEFINE_CONNECT_LEVEL is a definition section, like DEFINE_DEVICE or DEFINE_START. The best location to place it is immediately following the DEFINE_VARIABLE section. Underneath the DEFINE_CONNECT_LEVEL header is where all level connections are listed. Here is how DEFINE_CONNECT_LEVEL is used:

Example:
DEFINE_CONNECT_LEVEL (virtual device, virtual level, device 1, level number 1, device 2, level number 2,...etc.)

The section inside the parentheses represents a single connection. All levels listed in the connection will follow each other. If any one level changes, all others in the connection will change to match. Any number of levels may be supported per connection, and there is no limit to the number of connections.

Here is how you would use DEFINE_CONNECT_LEVEL in a program to connect the Touch Panel bargraph to the NetLinx volume controller levels:

define_connect_level
(vdvVol, 1, dvTP, 1, dvVOL, 1, dvVOL, 2);
This connects level number 1 on the Touch Panel (the bargraph) and levels 1 and 2 on the volume controller. The reason that two levels on the volume card are included is because the volume controller has two levels: the left audio channel and the right audio channel. These connections are a two-way street: anytime the bargraph is changed, both volume levels will follow, and anytime a volume level is changed (for example, by the volume control buttons on the Touch Panel), the bargraph will automatically follow. Since the primary level is virtual, the primary device (a virtual device) cannot be taken off-line or be removed from the system. When using DEFINE_CONNECT_LEVEL, it is not necessary to use the SEND_LEVEL keyword in your program, since the connection takes care of updating the bargraph.

LEVEL_EVENTs
This keyword defines a LEVEL_EVENT handler. This type of handler is triggered by a level change on a particular device. It can only be used in the DEFINE_EVENT section of the program. The level properties are available to the LEVEL_EVENT handler as a local variable. This eliminates having to constantly evaluate a level against a previous value. The format for the LEVEL_EVENT is as follows:

level_event[<device>,<level>]
{
 // level_event handler
}
What information might be associated with the level of volume device changing?
· The value of the volume level
· The device, port, and system of the volume device that had its level changed
· Which level on the device changed

Please see the Appendix - Embedded Event Data Properties for more information on LEVEL_EVENTs.

NetLinx LEVEL_EVENT:

level_event[dvHVAC,1]
{
 if (level.value >= COOL_POINT)
 {
 on[dvRelays,RELAY_HVAC_FAN];
 }
 else if (level.value <= HEAT_POINT)
 {
 off[dvRelays,RELAY_HVAC_FAN];
 }
}
LEVEL.VALUE is an embedded property value in the LEVEL_EVENT statement. A complete listing of these properties are available for each event handler in the Netlinx keywords help in Netlinx Studio. The LEVEL.VALUE property eliminates the need to create a level for the dvHVAC device.

Code Examples:
DEFINE_DEVICE
dvDVX = 5002:1:0; // Output 1 of an Enova DVX
dvTP = 10001:1:0; // MST-701
vdvVol = 33001:1:0; // Virtual volume device

DEFINE_CONSTANT
LEFT_VOL_MUTE = 3;
DEFINE_VARIABLE
persistent integer nPreset[2]; // STORAGE SPACE FOR 2 PRESET VOLUMES
volatile integer nVolLevel; // VARILABLE TO TRACK THE VOL LEVEL
DEFINE_CONNECT_LEVEL
(vdvVol,1,dvDVX,1,dvTP,1)
DEFINE_START
create_level dvDVX,nVolLevel; // ASSOCIATES VOL LEVEL WITH VARIABLE

DEFINE_EVENT
button_event[dvTP,34] // PRESET SELECT BUTTON
{
 push:
 {
 off[vdvVol,LEFT_VOL_MUTE];
 }
 release:
 {
 send_level vdvVol,1,nPreset[1];
 }
 hold[20]: // IF BUTTON HELD FOR 2 SECONDS
 {
 nPreset[1] = nVolLevel; // STORES CURRENT LEVEL IN PRESET
 send_command dvTP,”’ADBEEP’”; // ELEMENT ONE AND DOUBLE BEEPS PANEL
 }
}

timeline_event[TL_FB]
{
 [dvTP,34] = (nPreset[1] == nVolLevel);
}

Preset Example:

DEFINE_VARIABLE
voaltile integer nVolLevel;
persistent integer nPreset[2];

DEFINE_EVENT
button_event[dvTP,29]
button_event[dvTP,30]
{
 push:
 {
 off[vdvVol,199]; // Un-Mute volume
 }
 release:
 {
 send_level vdvVol, 1, nPreset[button.input.channel - 28];
 }
 hold[5]:
 {
 send_command dvTP,'ADBEEP';
 nPreset[button.input.channel - 28] = nVolLevel;
 }
}

This example illustrates CREATE_LEVEL, SEND_LEVEL, subroutine (FUNCTION), and toggling (x=!x)
Volume Levels
DEFINE_VARIABLE
volatile integer nChanLevel[9]; // Holds vol lvl for each input chan and main out
volatile integer nOldChanLevel[9]; // Holds old vol level of each channel and main out

DEFINE_EVENT
button_event[dvTP,11]
{
 push:
 {
 CH_MUTE[4] = !CH_MUTE[4];
 if (CH_MUTE[4])
 {
 nOldChanLevel[4] = nChanLevel[4]; // SAVE CURRENT LEVEL
 fnSetGain(nAddress, 4, 0); // MUTE CHANNEL 4
 send_level dvVOL, 1, 0; // SENDS BARGRAPH TO 0
 }
 else
 {
 // Set channel 4 back to orginal lvl
 fnSetGain(nAddress, 4, nOldChanLevel[4]);
 send_level dvVol, 1, (255-(nOldChanLevel[4] * 8)); // SENDS BARGRAPH TO ORGINAL LVL
 }
 }
}

Strings & Buffers
Lesson Topics:
· SEND_COMMAND / SEND_STRING
· Arrays
· Arrays As Strings
· String Literals
· String Expressions
· ASCII Codes
· DATA_EVENT/ DATA.TEXT
· Buffers
· Buffer Keywords
· Array & String Manipulation Keywords

SEND_COMMAND / SEND_STRING
Two main keywords will be used extensively with arrays and strings. The primary difference between them is the intended destination device.
· SEND_COMMAND
· Sends device-specific commands to an AMX device.
send_command device, 'device command';
· SEND_STRING
· Passes a command string through the AMX device to an external piece of equipment.
send_string device, 'string';

Arrays
Arrays are the most common way of combining a number of data items into a single variable. An array is a collection of variables that are of the same data type and are referenced by the same Identifier. Each item in an array is called an Element. All Elements in the array are referenced by the name of the array and by an index number corresponding to their position in the array. Array index numbers in NetLinx start at 1 (not 0).
· Arrays can be of any data type (CHAR, INTEGER, FLOAT, SIGNED, LONG, etc.)
· Arrays can have up to 5 dimensions
· You can define arrays of structures, initialize arrays within the DEFINE_VARIABLE or DEFINE_START section, and define arrays as constants. 	

All arrays discussed to this point have a range of values in each element of 0 to 255 and are classified as character arrays. (See ASCII Table for character values.) The range of values in a single variable is 0 to 255, and when a value greater than 255 is assigned to an array element, the number is truncated above 255. For example, if the number 500 is assigned to an element in an array, the actual number that is assigned is 244. The easiest way to find the actual number is to subtract 256 from the number until the number is less than 256 (in this example, 500 - 256 = 244).
To create an array in which each element can contain values greater than 255, use an integer array.
An integer array is just like a character array, except each element can hold values from 0 to 65,535.

To declare an integer array, place the keyword INTEGER in front of the array definition in the DEFINE_VARIABLE section. If you want your CAM_PRESETS array to be an integer array, you would include the keyword INTEGER before the array identifier:

DEFINE_VARIABLE
persistent integer nCamPresets[6]; // Camera presets

This declares an integer array with six elements; each element can hold values from 0 to 65,535. The contents of an integer array are often referenced by an element number. Example:

CAM_PRESETS[2] = 128;

There are certain limitations of integer arrays. If an integer array is loaded into a CHAR array, values above 255 are truncated. For example:

nInt = "'H','E','L','L','O'"; // Each letter’s value is less than 255

This also happens if an integer array is sent to a device using the keywords SEND_STRING or SEND_COMMAND. There is no problem, however, in assigning a string array to an integer array. An integer array takes up twice as much memory than would a string array of the same storage capacity.
· If your array is only going to hold alphanumeric values, it is best practice to make it a CHAR array.

DEFINE_VARIABLE
volatile char sStr[5];

DEFINE_START
sStr = "'H','E','L','L','O'";

Multi-Dimensional Arrays
Any of the single dimension array types listed above can be used to define an array of n dimensions. A 2-dimensional array is simply a collection of 1-dimensional arrays; a 3-dimensional array is a collection of 2-dimensional arrays, and so forth. Here's an example:

integer nNum1D[10]; // [Column]
integer nNum2D[5][10]; // [Row][Column]
integer nNum3D[2][5][10]; // [Table][Row][Column]
One way to view these arrays is to think of Num2D as being a collection of five Num1D's and Num3D as being a collection of two Num2D's. When referencing elements of the above arrays:

nNum1D[1] // Refers to the 1st element
nNum2D[1] // Refers to the 1st row
nNum2D[1][1] // Refers to the 1st element of the 1st row
nNum3D[1] // Refers to the 1st table
nNum3D[1][1] // Refers to the 1st row of the 1st table
nNum3D[1][1][1] // Refers to the 1st element of the 1st row of the 1st table
The following operations are legal:

nNum2D[2] = nNum1D;
nNum2D[5][5] = nNum1D[5];
nNum3D[2] = nNum2D;
nNum3D[2][1] = nNum1D;
nNum3D[2][1][1] = nNum1D[1];
LENGTH_ARRAY and MAX_LENGTH_ARRAY are used to determine the effective and maximum lengths of multidimensional arrays as shown in the following examples:

volatile integer nLen;
voaltile integer nMy3DArray[5][3][4];
nLen = max_length_array(nMy3Darray); // nLen = 5
nLen = max_length_array(nMy3Darray[1]); // nLen = 3
nLen = max_length_array(nMy3Darray[1][1]); // nLen = 4

volatile integer nLen;
volatile integer nMy3DArray[5][3][4] =
{
 {
 {1,2,3,4},
 {5,6,7,8},
 {9,10,11}
 },
 {
 {13,14}
 }
};

nLen = length_array(nMy3Darray); (* Len = 2, number of tables *)
nLen = length_array(nMy3Darray[2]); (* Len = 1, number of rows in table 2 *)
nLen = length_array(nMy3Darray[1][3]); (* Len = 3, number of columns in table
 1, row 3 *)
Arrays as Strings
There are two ways of referencing array data in AMX programs. Each element can be referenced as an individual value; or, each array can be referenced as a group of characters. An entire array can be accessed as one unit. If you refer to an array without specifying an index value, the contents of the entire array is referenced as a string, as shown in the following example:

DEFINE_VARIABLE
volatile char sTestString[10];

DEFINE_EVENT
button_event[dvTP,1]
{
 push:
 {
 sTestString = 'TEST ONE';
 send_string dvDevice,"sTestString";
 }
}

This small section of code will send a string to the specified DEVICE: 'TEST ONE'. We assigned a string expression to sTempString and then sent it to the device; the entire string expression was sent.
Suppose that during power-up of an AMX Control System you want to set all the presets to default values. You could do this by assigning values to each individual element in the CAM_PRESETS array. It is recommended, however, to use a string expression to set all six at once, as shown below:

DEFINE_VARIABLE
PERSISTENT INTEGER nCamPresets[6];

DEFINE_START
nCamPresets = "0,30,90,128,191,255"; // Set all preset values at power-up.

This approach requires only one executable line of code instead of 6.

nCamPresets[1] = 0;
nCamPresets[2] = 30;
nCamPresets[3] = 90;
nCamPresets[4] = 128;
nCamPresets[5] = 191;
nCamPresets[6] = 255;
In many cases you may need to transfer a series of data values at once. You can do this by using strings and string expressions. A string is a set of values grouped together with single and/or double quotes. Strings enclosed in single quotes are called string literals. Examples of strings include names and the actual command portion of SEND_COMMAND statements.

	[image:]
	String keywords (i.e. FIND_STRING, REMOVE_STRING, MID_STRING, etc.) do not work on integer arrays.

Sending Strings
To send a string to the outside world, use the SEND_STRING keyword. This tells the processor to send the string through the AMX port to the 3rd Party device. The syntax is:

send_string device, <string, variable, or string expression>;

The first value after the SEND_STRING keyword is the device number or identifier to which you wish to send the string. Following that is a comma, then the string, variable (which can be either a normal variable or an array), or string expression you wish to send. When an array variable is specified, the number of transmitted array characters is determined by the array length value. Set the length value for the array with the SET_LENGTH_STRING function.
For example, if you need to send the sTEMP array to a card named RS232, you would write the following line:

send_string dvRS232,"sTemp";

String literals and string expressions can also be sent using SEND_STRING. For example:

send_string dvRS232,'This is a string literal';

Sends the entire set of characters enclosed in the single quotes, from left to right, to the device named RS232.

send_string dvRS232,"'EXPRESSION', sTemp,$0D,$0A";

This statement first builds the string expression using a string literal, followed by the characters stored in TEMP (defined by its length value), and then two numbers (expressed here in hexadecimal). The hexadecimal numbers in the example represent the codes for carriage return and line feed, respectively.

String Lengths
Every array declared in the DEFINE_VARIABLE section has a string length value associated with it. The string length of an array has an internal value set for arrays by string assignment operations.
This number is different than the storage capacity declared in the DEFINE_VARIABLE section. You can get the length value of an array by using the LENGTH_STRING function. For example:

nLength = length_string(sCamPresets);

Here are examples of some assignments, and what the above line of code would return to the variable length in each case:

sPresets = 'FOUR'; // Length = 4
sPresets = 'ONE'; // Length = 3
sPresets = "12,5,'123'"; // Length = 5
sPresets = "PLAY,5,0,'NO',X"; // Length = 6

Until data is loaded into the array, it has the length = 0.

The length of a string array cannot exceed the number of storage locations allocated to it in the DEFINE_VARIABLE section. For example, if the string 'GOODBYE' is placed in the sCamPresets variable, the array will only contain the string 'GOODBY', dropping the final 'E' because sCamPresets was defined to hold a maximum of six locations. The length of sCamPresets would also be set to 6. If you attempt to assign an array that exceeds the storage allocations, the system will generate a run time error message: BAD SET LENGTH.

When string literals and string expressions are assigned, the length of the string array is automatically set to the length of the string literal or string expression being assigned to it. However, assigning values to individual elements of an array does not affect the length value of the array. For instance, if the letters W, O, R, and D are assigned individually to elements of sCamPresets, as shown below, the length will not change; if the length was previously 3, it will still be 3.

sPresets[1] = 'W';
sPresets[2] = 'O';
sPresets[3] = 'R';
sPresets[4] = 'D';

The SET_LENGTH string keyword explicitly sets the string length value of an array variable. For instance, to set the length value of sCamPresets to 4, you would use the statement:

set_length_string(sCamPresets, 4);

String lengths play an important role in the handling of strings. The following string expression contains an array:

sNewString = "5,sTemp,'GO'";

As the string is constructed from this expression, the number of characters it adds from sNewString will equal the sTemp string's length value. If sTemp contains 1, 2, 3, 4, 5, 6, but its string length value is 3, the resulting string from the above string expression will look like the following example:

sTemp[1] = 1;
sTemp[2] = 2;
sTemp[3] = 3;
sTemp[4] = 4;
sTemp[5] = 5;
sTemp[6] = 6;
SET_LENGTH_STRING(sTemp,3);
NEW_STRING = "5, sTemp,'GO'"; // sNewString now equals "5,1,2,3,'G','O'";

The array string length is important to many string operations. This value determines how much of the string is used when the entire array is referenced. Knowing this will prevent subtle errors in your code. For instance, if you assign values to individual elements in an array, and then assign that array to another, nothing is copied. For example:

sTemp[1] = SCREEN_UP;
sTemp[2] = 5;
sTemp[3] = Ø;
sTemp[4] = 'N';
sTemp[5] = 'O';
sTemp[6] = X;
CAM_PRESETS = sTemp;

The contents of the array sCamPresets, after this code is executed, depend on the length value of the sTemp variable. If this were the entire program, sTemp would have a default length of 0, so nothing would be copied into sCamPresets. To assure that sCamPresets holds a copy of sTemp, you would first need to set the length value of the sTemp array with this line inserted before the copy statement:

set_length_string(sTemp, 6);

The line above, when executed with the previous code example, renders the following result:

sTemp = "SCREEN_UP,5,0,'NO',x";
After this, the length value of sTemp is 6; so, the first 6 locations of sTemp will be used in all cases where you refer to the entire array.
String Literals
Single quotes can only enclose values ranging from decimal 32 (the space character) to decimal 126 (the tilde character '~'). (See ASCII Code Chart section for details.) These string literals are constant values that are set at compile time. Once loaded into the Central Controller, these strings cannot be changed, except when a new program is loaded into the Central Controller.

	[image:]
	An index value is not given when strings are assigned to arrays. The first letter is automatically placed into the first storage location; the second letter is placed into the second storage location, and so on.

Here is an example of a string literal assigned to an array:

sPresets = 'FOUR';

When the program processes this assignment, it places the 'F' (ASCII value 70) in location 1 of sPresets, 'O' (ASCII value 79) in location 2, and so on, as shown in FIG. 1. String 'FOUR' is placed in the array sPresets.

FIG. 1 The string 'FOUR' is assigned to the array sPresets
As previously illustrated, the length of sPresets is 4.

String Expressions
Single and double quotes are interpreted in two different ways. Single quotes enclose string literals, double quotes enclose string expressions. A string expression combines several types of data into a single string. It can contain any ASCII value (Ø to 255), variables, string literals, and arrays. The difference between a string literal and the string expression is that the string expression is built at run time instead of compile time. As a string expression is processed, each member of the expression is evaluated from left to right; the result is a complete string. For example:

sTemp = "SCREEN_UP,5,0,'NO',x";

	[image:]
	A string expression cannot contain another string expression; i.e., a set of double quotes cannot enclose another set of double quotes.

Assuming that SCREEN_UP is a constant with the value of 1, and X with the value of 10, the string expression is evaluated as a string with values: 1, 5, 0, 'N', 'O', 10, as shown in FIG. 2. Since the expression is evaluated at run time, whatever value is in the variable X when the expression is evaluated is what is placed into the result.

FIG. 2 A string expression is assigned to the array sTemp.

ASCII Codes
A string is broken up into single letters when placed into a string array. Each storage space returns the letter it is holding when referenced. For the following example, assume that sTemp[3] holds the letter 'R'. There are actually three ways you can reference this array location, shown in this example using IF statements:

if (sTemp[3] == 'R')
{
 send_string 0,"'sTemp[3] is equal to "R"',$ØD,$ØA";
}
if (sTemp[3] == $52)
{
 send_string 0,"'sTemp[3] is equal to "R"',$ØD,$ØA";
}
if (sTemp[3] == 82)
{
 send_string 0,"'sTemp[3] is equal to "R"',$ØD,$ØA";
}

The letter R has an ASCII value of 82 decimal, which is equivalent to 52 in hexadecimal. In the AMX programming language, hexadecimal numbers begin with a dollar sign ($). Therefore, the 2nd IF statement above shows $52, a hexadecimal number. To the processor, all three of these values are identical.

All three methods (letters, decimal equivalents codes, and hexadecimal values) can be used interchangeably. Use whichever method is easiest for the task at hand.

ASCII Code Chart
The table lists the hexadecimal values for all ASCII characters.

Conversion keywords
The following keywords automatically set the length value of the resulting string.

	Conversion Keywords

	ATOI
	ATOI stands for "ASCII to integer". It takes a string literal, string expression, or array as a parameter, and returns a single integer as the result. Example:
DEFINE_CONSTANT
STR1 = '456';
STR2 = 'YES789GO19';
DEFINE_PROGRAM
nNum = atoi('123'); (* nNum = 123 *)
nNum = atoi(STR1); (* nNum = 456 *)
nNum = atoi(STR2); (* nNum = 789 *)
If the string contains all non-numeric characters (such as HELLO), ATOI returns the integer Ø. However, if there are any numeric characters embedded in the string, ATOI returns the first complete set it comes upon, as is the case with sStr1 above. Notice that only the first set of numbers from STR2 is returned.

	ITOA
	ITOA stands for "integer to ASCII". It creates a string that represents the decimal value of a number. Example:
DEFINE_CONSTANT
CONST = 456;
DEFINE_VARIABLE
volatile char sStr[5];
volatile integer nVar;
DEFINE_PROGRAM
nVar = 789;
sStr = itoa(123); (* sStr = '123' *)
sStr = itoa(CONST); (* sStr = '456' *)
sStr = itoa(nVar); (* sStr = '789' *)
The comment after each statement shows the value of the array sStr after each assignment. The length value of sStr is set to 3 in each case.

	ITOHEX
	ITOHEX stands for "integer to hexadecimal". It works in the same manner as ITOA, except that the integer is transformed into a hexadecimal ASCII string.
If you substitute the ITOA keywords in the previous example with ITOHEX keywords, this would be the result:
sStr = itohex(123); (* sStr = '7B' *)
sStr = itohex(CONST); (* sStr = '1C8' *)
sStr = itohex(VAR); (* sStr = '315' *)
Notice there are no dollar signs ($) in the results. This is because the dollar sign indicates a numerical value expressed in hexadecimal, and is only used when telling NetLinx that a number is hexadecimal.

	ATOL
	This function converts a character representation of a number to a signed 32-bit integer.
slong atol(char sString[])
Parameters:
• STRING: A string containing the character representation of the integer.
The result is a 32-bit signed integer representing the converted string. Any nonnumeric characters in the string are ignored. ATOL returns the value representing the first complete set of characters that represents an integer. Valid characters are "0" through "9" and the sign designators "+" and "-". If no valid characters are found, zero is returned as a result.
nNum = atol('Value = -128000'); // nNum = -128000

	ATOF
	This function converts a character representation of a number to a 64-bit floating-point value. It recognizes a character representation of a signed integer or floating-point number (with or without exponent).
float atof(char string[])
Parameters:
• STRING: An input string containing the character representation of the floating-point number.
The result is a 64-bit floating-point number representing the converted string. Any non-numeric characters in the string are ignored. ATOF returns the value representing the first complete set of characters that represents a floating-point value. Valid characters are "0" through "9", ".", the sign designators ("+" and "-"), and the exponent ("e" or "E"). If no valid characters are found, zero is returned as a result.
fNum = atof('The total = -1.25e-3'); // fNum = -0.00125

	FTOA
	This function converts a 64-bit floating-point value to an ASCII string containing the decimal representation of the number.
char[] ftoa(double dNum, integer nDigits)
Parameters:
· Num: 64-bit floating-point number to convert to a decimal string.
· nDigits: Maximum number of digits to use to represent the number. If nDigits is not large enough to represent the number, exponential notation is used. At least two digits will always be used regardless of the value of nDigits.
The result is a character string that contains the decimal representation of the specified floating-point number. The character representation will use exponents if necessary.
sString = ftoa(123.4, 4); // sString = '123.4'
sString = ftoa(123.4, 3); // sString = '1.23e2'
sString = ftoa(123.4, 2); // sString = '1.2e2'

	HEXTOI
	This function converts an ASCII string containing the hexadecimal representation of a number to an unsigned 32-bit integer.
long hextoi(char string[])
Parameters:
• STRING: Hexadecimal formatted string to be converted to an integer
The result is a 32-bit unsigned integer representing the converted string. Any nonhexadecimal characters in the string are ignored. HEXTOI returns a value representing the first complete set of characters that represents an integer. Valid characters are "0" through "9", "A" through "F" and "a" through "f". If no valid characters are found, zero is returned as a result.
nNum = hextoi('126EC'); // nNum = 75500

DATA_EVENTs
This keyword defines a data event handler. This type of handler processes COMMAND, STRING, ONLINE, OFFLINE and ONERROR events. It can only be used in the DEFINE_EVENT section of the program. DATA_EVENTs provide some interesting capabilities in a NetLinx system. At first glance, DATA_EVENT seems to be concerned with receiving strings of data either from a serial data device such as an EXB-COM2 or an interface device such as a touch panel. While this is a valid function, DATA_EVENT has many more capabilities and work with many devices. Here is the structure for a DATA_EVENT:

DATA_EVENT [<device>]
{
 COMMAND:
 {
 //command data event handler
 }
 STRING:
 {
 //string data event handler
 }
 ONLINE:
 {
 //online data event handler
 }
 OFFLINE:
 {
 //offline data event handler
 }
 ONERROR:
 {
 //error data event handler
 }
}

NetLinx is able to process data received by a DATA_EVENT in real time. When data is received, it enters the message queue and triggers a DATA_EVENT. If a buffer has been created for the device, the data is placed within the buffer and can then be used by either the DATA_EVENT or mainline. The data can be evaluated in two ways. The actual string that is received by the message queue can be evaluated using the DATA.TEXT property within the event. The string in DATA.TEXT is also added to the end of the device’s buffer. This becomes a factor when receiving large strings or when receiving strings with an embedded string length or start and end characters. The DATA_EVENT can then evaluate the buffer to see if the entire string has been received before processing it. However, the evaluation is done immediately upon receipt of another chunk of data, and is only done when data is received. For example, DATA.TEXT may equal {'over the lazy brown dog',ETX} and the sDataBuffer[500] might equal {STX,'The quick grey fox jumps over the lazy brown dog',ETX}. By evaluating the buffer value, you can evaluate the entire string at once.

Two other important aspects of the DATA_EVENT are the ONLINE and OFFLINE event handlers. ONLINE and OFFLINE events are triggered when the master recognizes a device has come on the bus or has dropped off the bus.

In NetLinx all device initializations and offline warnings are handled through the DATA_EVENT. Since every device triggers an ONLINE event when the master is reset, this not only ensures that the device will be initialized on startup but also insures that the device will be initialized anytime the device comes online. The DATA_EVENT is also evaluated on an as needed basis, rather than on each pass through mainline. It is not recommended to initialize devices in DEFINE_START because it runs only once and before devices come online.

NetLinx Data Event:
DEFINE_EVENT
data_event[dvTP] // Evaluate TP data
{
 string:
 {
 select
 {
 active (find_string(data.text, '^PGE-', 1)):
 {
 remove_string(data.text, '^PGE-', 1);
 sCurPage = data.text;
 }
 active (find_string(data.text, '^KEYP-', 1)):
 {
 // keypad code
 }
 active (find_string(data.text, '^KEYB-', 1)):
 {
 // keyboard code
 }
 active (1):
 {
 // default code
 }
 }
 }
 online:
 {
 send_command dvTP, '^ADB';
 }
}
Each event handler contains several imbedded data properties, which pass data values into the event handler code. A complete listing of these properties are available for each event handler in the NetLinx Programming Language Instruction Manual.

Please see the Appendix - Embedded Event Data Objects for more information on this Event.

Buffers
One of the most powerful features of AMX devices are their ability to send and receive any combination of values using RS-232, RS-422, RS-485, TCP/IP, and a variety of other formats. You have the ability to construct any combination of numbers and characters with the string expression and send it to an external device. In addition, you can receive strings from external devices and interpret them to obtain useful information. The received strings are temporarily stored in Buffers. A Buffer is an array variable that is associated with a particular device that stores information sent by the device. Buffer Keywords:
· CLEAR_BUFFER
· CREATE_BUFFER
· GET_BUFFER_CHAR

Receiving Strings
There are two primary ways to receive strings: STRING handler of a DATA_EVENT or a buffer. To use a buffer, you must first create a buffer that will receive strings from a device. A buffer is an array variable associated with a particular device for the purpose of storing information received from the device.

Creating Buffers
To create a buffer, use the CREATE_BUFFER keyword to create a link between the device and the destination array. This keyword can only appear in the DEFINE_START section of your program; the syntax is:

create_buffer device, array;

	[image:]
	CREATE_BUFFER can only be used in the DEFINE_START section.

The CREATE_BUFFER keyword directs the processor to place any data received from the specified device into the specified array. When the bytes are placed into the array, it increments the length value for the array and then places the bytes into the array at the current end of the array. See FIG. 3 for a pictorial explanation.
Even though the array is acting as a buffer, it is still an array and can be treated as one. You can still access the individual locations, send it to a device, assign it to other arrays, assign other arrays to it and use the array manipulation keywords,

FIG. 3 When data comes in from a device, it goes into the spot determined by the length value of the array. Here, the length value was 3. So the 'Y' is put into location 4, and the length value is incremented to 4.
	[image:]
	Using DATA_EVENTs accomplishes the same thing.

Storing Characters
When a device sends string information to the Central Controller, the Central Controller places the incoming information into the buffer created for that device, and updates the buffer's length value. These actions are executed after the Central Controller has passed through mainline. Since all data going in and out of these devices is serial, each byte is handled one at a time.

NetLinx drops characters that exceed the array length (FIG. 4).

FIG. 4 In NetLinx, inserting a character into a full Buffer causes the first character to be dropped.
	[image:]
	Because of this condition it is EXTREMELY important to properly size and clear your buffers after use.

Retrieving Characters
Use the keyword GET_BUFFER_CHAR to retrieve characters. This keyword has a two-part operation:
· First, it retrieves the first character in the buffer for your own utilization. This creates the same effect as if you retrieved the first storage location of a normal string array.
· Second, it removes that character from the buffer, causing all the other characters to shift up one place. The second character is now the first, the third is now the second, and so on.
·
Here is the syntax: string = get_buffer_char(array);

The parameter passed to GET_BUFFER_CHAR must be an array, but does not need to be a buffer. Remember that all buffers are arrays, but not all arrays are buffers. The statement will operate identically in either case. The result must be a simple variable (not an array), because only one character will be returned.

These examples show how to create an array called sSwitchBuffer with a capacity of a hundred characters, and how to make it a buffer associated with a device named dvSwitcher.

DEFINE_DEVICE
dvSwitcher = 5001:1:0; // AMX PrecisLT Switcher

DEFINE_VARIABLE
volatile char sSwitchBuffer[100]; // BUFFER FOR SWITCHER
voaltile char cTempChar; // FOR PARSING ABOVE

DEFINE_START
create_buffer dvSwitcher, sSwitchBuffer;

Now all string data sent to the Central Controller from the device SWT will go into the array sSwitchBuffer.

Getting the data out of the buffer as soon as it enters is usually a two-step process, as shown in this example:

if (length_string(sSwitchBuffer)) //THERE IS AT LEAST ONE CHARACTER IN BUFFER
{
 cTempChar = get_buffer_char(sSwitchBuffer); //REMOVE FIRST CHAR

 if (cTempChar = 'T' || cTempChar = '.')
 {
 send_string 0, "'SWITCH COMMAND COMPLETE',$ØD,$ØA"; //SEND RESULT THROUGH
 } //MASTER PORT TO TERMINAL
}
These two lines of code are actually one IF statement. The condition of the IF is the result of the LENGTH_STRING keyword. If there are not any characters in the buffer (the length value of sSwitchBuffer is 0), then the central controller will skip the second part of the statement.

The second part, which will be executed if there is one or more characters in sSwitchBuffer, retrieves the first character in sSwitchBuffer, and places it into the variable cTempChar, as shown in FIG. 5

FIG. 5 Getting the next character out of a buffer with GET_BUFFER _CHAR.
Characters should be continuously retrieved and removed from the buffer so that incoming strings have enough spaces to enter completely. Be sure to place a GET_BUFFER_CHAR statement in a position to do this. Remember, mainline is constantly running through the main program, and will execute the GET_BUFFER_CHAR statement as long as it is in its path of execution.

To get the data out of the sSwitchBuffer using REMOVE_STRING, use the following code:

if (length_string(sSwitchBuffer)) &&
 (find_string(switchBuffer, 'T',1) || find_string(switchBuffer, '.', 1)))
{
 stack_var char sTempStr[25];

 sTempStr = remove_string(sSwitchBuffer, 'T', 1);

 if (length_string(sTempStr) == 0)
 {
 remove_string(sSwitchBuffer, '.', 1);
 }
 if (length_string(sTempStr) == 1)
 {
 send_string 0, "'SWT ACK',13,10";
 }
}

The code on the previous page is similar and has the same effect as the previous code. The IF condition is looking to see if sSwitchBuffer has any characters in it with a FIND_STRING and then it looks to see if the string contains either a 'T' or a '.'. Once these two conditions are met, we attempt to remove a 'T' from the buffer. If that attempt fails, then the length of sTempStr will be 0. Only then will it attempt to remove the '.' since it did not find a 'T'. The REMOVE_STRING will remove all characters up to and including the 'T' or the '.'. So if the sSwitchBuffer contained a 'CI1O1T', then after the line of code:

sTempStr = remove_string(sSwitchBuffer, 'T', 1);

sTempStr will contain 'CI1O1T' and sSwitchBuffer will be empty.

Uppercase vs. Lowercase
When using FIND_STRING and REMOVE_STRING, or when comparing two string values, it is important to remember that these operations are case sensitive. Uppercase and lowercase values are not evaluated the same. As you recall, the compiler is not case sensitive when it comes to keywords and identifiers. However, the compiler is case sensitive when it comes to values inside single quotes (string literals). Here are some examples:

sIdentifier_1 = 'Fred'; sIdentifier = 'FRED';
if (sIdentifier_1 == sIdentifier_2)
{
 //This will not be true because 'Fred' and 'FRED' are not the same.
}
	[image:]
	When programming, you may use whatever capitalizing scheme you wish. As a standard at AMX, we capitalize all constants and use CamelCase for all variables and device names. All other text should be lower case.

Notice that the string literals 'FRED' and 'Fred' are not the same. However, in the case of identifiers sIdentifier_1 and sIdentifier_2, the program does not differentiate based on the case of the letters in the identifier name. Also, notice that in this example the keyword "if" is not capitalized, making no difference to the compiler.

Setting Uppercase and Lowercase
In a string literal, the lowercase letter 'a' is not the same as the uppercase letter 'A' Each has its own decimal ASCII code (the code for 'a' is 97, 'A' is 65). This could become problematic when, for example, your program compares the incoming string ABC against another, as shown below:

if (ABC = 'YES')
{
 //statement(s)
}

If the incoming string is 'YES', there is no problem. The statements are executed as normal. However, if ABC equals 'Yes', since 'YES' and 'Yes' do not have the same decimal ASCII value, the statements below the IF statement would not be executed.

The solution is to change all incoming strings to either uppercase or lowercase. The keywords that do this are UPPER_STRING and LOWER_STRING. For example, the following statement can be added before the preceding program:

ABC2 = UPPER_STRING(ABC);

The IF statement can now compare ABC2 against 'YES', providing that the IF statement reads IF (ABC2 == 'YES'). The string 'Yes' is accepted since it has been converted into uppercase. Conversely, LOWER_STRING converts a string into lowercase.

Buffer Keywords
The AMX Buffer keywords are described below:
	Buffer Keywords

	CLEAR_BUFFER
Clears a buffer.
	This keyword effectively sets the length of the buffer to zero, so that subsequent
GET_BUFFER_CHAR statements will not return anything. Using
CLEAR_BUFFER is preferable to other methods, such as assigning a null string to the buffer, or using SET_LENGTH_STRING. The CLEAR_BUFFER keyword actually compiles into smaller code and executes faster than the other methods, plus it is clearer to the reader as to what the programmer is trying to accomplish.

	CREATE_BUFFER
Use the CREATE_BUFFER keyword to create a buffer.
	This keyword can only appear in the DEFINE_START section of your program, and has the following syntax:
create_buffer device, array
CREATE_BUFFER places any strings received from the specified device into the specified array. When the byte is placed into the array, the length value is incremented for the array and then placed at the end of the array. In Axcess, when the array is full, all bytes in the array are shifted to make room for the new byte at the end. In NetLinx, overflow bytes are dropped.
Though the array is acting as a buffer, it is still an array and can be treated as one. You can access its individual locations, send it to a device, assign it to other arrays, assign other arrays to it, and use keywords to manipulate the array.

	GET_BUFFER_CHAR
This keyword is used to remove characters from a buffer.
	It has a two-part operation:
· First, it retrieves the first character in the buffer for your own utilization. This creates the same effect as if you retrieved the first storage location of a normal string array.
· Second, it removes that character from the buffer, causing all the other characters to shift up one place. The second character is now the first, the third is now the second, and so on.
Here is the syntax:
result = get_buffer_char(array)
The parameter passed to GET_BUFFER_CHAR must be an array, but does not need to be a buffer. The keyword will operate identically in either case. Only one byte (character) will be returned, and this value can be assigned to a variable, array, or a cell in an array.

Array & String Manipulation Keywords
The following keywords allow you to manipulate arrays and retrieve certain portions of an array:

	Array & String Manipulation Keywords

	LEFT_STRING
	LEFT_STRING returns a string containing the number of characters specified starting at the beginning of the string.
For this keyword, you must specify two parameters: the string or array you are referencing and the number of characters you need. Example:
sStr = left_string(sPresets, 3);
After execution of this line, the array STR will contain the first 3 characters of the array PRESETS. If PRESETS contains the string 'HELLO', then STR will contain 'HEL.' Also, the length value of sStr will be set to 3.

	RIGHT_STRING
	This keyword requires the same parameters as LEFT_STRING. However,
RIGHT_STRING begins reading at the end of the string array for the specified amount of characters. Example:
sStr = right_string(sPresets, 3);
Assuming sPresets still contains 'HELLO', replacing LEFT_STRING in the previous example with RIGHT_STRING will assign the string 'LLO' to sStr. This keyword also will set the length value of the array receiving the result.

	MID_STRING
	This keyword returns the specified amount of characters starting at a specified location in the source string. Three parameters, rather than two, are needed for its operation: the string to reference, the position at which to start, and the number of characters to return.
Example:
sStr = mid_string(sPresets, 2, 3);
This line tells Netlinx: "Place three characters from the array sPresets, starting at location 2 and moving to the right, into the array variable sStr." If sPresets contains 'HELLO', this line will assign 'ELL' to the array sStr. This keyword also will set the length value of the array receiving the result.

	FIND_STRING
	This keyword will search through a string for a specified sequence of characters. When that sequence is found, it returns the beginning position of that sequence.
The keywords explained previously are helpful when you know where certain parts of strings are located within a string array. However, there will be times when you don't know where certain parts of strings are located. In these cases, the FIND_STRING keyword is used.
For example, if you don't know the exact contents of the sTempStr array, but you want to find out if it contains the string 'LO', (assuming that sTempStr contains 'HELLO') the following line is executed. Example:
x = find_string(sTempStr,'LO',1);
When Netlinx executes this statement, it will search the array TEMP from the beginning, looking for the string LO. If Netlinx finds the substring, it returns the starting position of the substring in the TEMP array: in this case, 4. The third parameter (in this example, 1) tells Netlinx where (in the string) to start the search.

	REMOVE_STRING
	The REMOVE_STRING keyword is similar to the FIND_STRING keyword. How-
ever, when Netlinx finds the sequence it is looking for, it extracts every character up to and including the sequence, starting from the number in the third parameter. All other characters move up to fill in the space. Example:
DEFINE_VARIABLE
volatile sSource[20];
volatile sDest[20];

DEFINE_EVENT
timeline_event[TL1]
{
 sSource = 'THIS IS A TEST';
 sDest = remove_string(sSource, 'IS', 1);
}
After the last line is executed, sDest will contain 'THIS', and sSource will contain 'IS A TEST'. Notice that after the removal, the first location of the array sSource contains a space. This is because REMOVE_STRING removed all characters from the beginning of SOURCE up to and including the string 'IS'. It did not remove the space following the string 'IS' in sSource. Also notice that the first occurrence of 'IS' is embedded in the word 'THIS'. The length values of both arrays are set according to the results of the operation. In this case, the length value of sSource is set to 4; sDest is set to 10.
In FIND_STRING, each of the first two parameters can be a string literal, a string expression, or an array. However, in the case of REMOVE_STRING, having anything except an array as the first parameter is illogical because Netlinx cannot remove part of a string literal or string expression, only an array variable. This is because string literals are constant values and string expressions may contain constant values. Once loaded into the Central Controller, constant values cannot be changed, as shown in the following examples:
sStr = remove_string(sTemp, "12", 1); // OK
sStr = remove_string("2, 'HELLO', 10, 13", 'HELLO', 1); // NO
REMOVE_STRING changes the first parameter after it removes whatever characters it needs. Only variables can be changed at run time. Supply the starting position of the search as the third parameter for both FIND_STRING and REMOVE_STRING.

	LENGTH_STRING
	Returns the current length value of an array.
This number is different from the storage capacity of an array, which is defined in the DEFINE_VARIABLE section. The length value of an array is the number of characters in the array. This value can change during program execution (aka at runtime). Syntax:
result = length_string(string array);

	SET_LENGTH_STRING
	Sets the length value of an array to a specified value. The length value of an array is used by several of the string operation keywords. Syntax:
set_length_string(string array, new length);

Code Examples:
This example illustrates CREATE_BUFFER, Sending text to the touch panel and clearing buffers. A buffer can be declared volatile since it's contents are not required after the system is shutdown. The device will report it's new status in response to the next command.
Buffers
DEFINE_VARIABLE
volatile char sAP800_Buff[255];
volatile integer nLen;

DEFINE_START
create_buffer dvAP800, sAP800_Buff;
DEFINE_EVENT
data_event[dvAP800]
{
 string:
 {
 if (find_string(sAP800_Buff, "13", 1))
 {
 send_command dvTP, "'^TXT-1,0,',strAP800_BUFF";
 send_string 0, "'RESPONSE IS ',strAP800_BUFF";
 sAP800_Buff = remove_string(sAP800_Buff, "13", 1);
 nLen = length_string(strAP800_Buff);
 set_length_string(sAP800_Buff, nLen - 1);
 nMuteFb = atoi(right_string(sAP800_Buff, 1));
 clear_buffer sAP800_Buff; // Clear it out (Sets index pointer to 0)
 }
 }
}

OR

DEFINE_VARIABLE
volatile char sAP800_Buff[255];
volatile integer nLen;
data_event[dvTP]
{
 string:
 {
 send_command dvTP, "’^TXT-1,0,’,data.text";
sAP800_Buff = left_string(data.text, length_string(data.text) - 1); nMuteFb = atoi("right_string(data.text, 1)");
 }
}

Loops
Lesson Topics
· WHILE Loops
· FOR Loops

While Loops
The WHILE family of keywords allow the program to loop through a certain section of a program until a condition becomes false. If the condition is false, NetLinx skips the statements immediately following the WHILE. If the condition is true, NetLinx executes the statements, and rechecks the WHILE's conditional expression. If the condition is still true, the statements are executed again. This sequence continues until the condition is evaluated as false.

while (<conditional expression>)
{
 //conditional statements
}

In NetLinx, statements are executed repeatedly while the conditional expression evaluates to true. The condition is tested before each pass through the conditional statements.
	While Keywords

	WHILE
	This keyword executes its statement block as long as its associated condition evaluates to true. The condition is evaluated before the first pass through the statements. Therefore, if the conditional expression is never true the conditional statements will never be executed.
while (<conditional expression>)
{
 (* conditional statements *)
}

	LONG_WHILE
	This keyword is the same as a WHILE statement except that input messages are retrieved after each pass to allow the LONG_WHILE statements to process the input.
long_while (<conditional expression>){(* conditional statements *)}

	[image:]
	AMX recommends avoiding the use of WHILE Loops. Incorrect usage of a WHILE Loop can cause a program to get stuck in the loop.

FOR Loops
FOR loops are an alternative looping procedure to traditional loops. Functionally they do the same thing, but FOR loops are more readable. FOR loops, like WHILE loops, do not process input changes from the message buffer.

FOR Loop Structure
The FOR loop structure allows you to define initialization statements; statements to execute after each pass through the loop and a condition to test after each pass. If the condition evaluates to true, another pass is made. Otherwise, the loop is terminated. The syntax of the FOR loop is as follows:

for (<initializer>; <condition>; <after pass>)
{
 //loop statements
}

Parameters:
	<initializer>
	One or more statements that are executed one time before any FOR loop statements are executed. Each statement must be separated with a comma; this is typically a FOR loop index initialization statement.

	<condition>
	A condition whose value is computed before each pass. If the condition evaluates to TRUE, the FOR loop statements are executed. If the condition evaluates to FALSE, the loop is terminated.

	<after pass>
	One or more statements that are executed after each pass through the statements. Each statement must be separated with a comma. This is typically a statement that increments the FOR loop index.

In NetLinx you can write the same loop with a FOR statement and clarify how the loop operates:

for (loop = 0; loop < 10; loop++)
{
 //loop statements
}

By defining the loop like this, you clearly see both how the loop is initialized and how the loop is incremented. If you forget to initialize the WHILE loop or forget to initialize the counter, you don’t get any errors. The FOR loop helps to insure proper structure.

Multi-Dimensional Arrays, Structures, & Data Sets
Lesson Topics
· Multi-Dimensional Arrays
· Data Structures
· Assigning Values to Arrays and Structures
· Data Sets

Multi-Dimensional Arrays
NetLinx has the ability to store up to 5-dimensional arrays. Multi-dimensional arrays give us the ability to store groups of similar data.

It is a good idea to limit the scale of arrays to two-dimensional or three-dimensional arrays, because of the complexity of documenting the arrays and clarifying the use of the array in the code. Multi-dimensional arrays can also unnecessarily consume a lot of memory.

Since each dimension in multi-dimensional array to contain 65,535 elements, it is important to know how much memory is allocated to an array. A character array defined with five dimensions each containing only 64 elements that array will occupy 1,073,741,824 bytes or 1 giga-byte of memory! More memory than is currently available in the NetLinx system.

Multi-dimensional arrays are also limited to only one data type, and may not be the right type of tool for the job. If more than two dimensions are needed, the use of a structure is recommended.

Examples:
This will define a character array that can hold up to 25 elements (characters). This array can store one song title.

DEFINE_VARIABLE
volatile char sCdList[25];

This defines a two dimensional character array that can hold 12 sets of 25 elements (characters). This array can store twelve song titles each with 25 characters.

DEFINE_VARIABLE
volatile char sCdList [12][25];
This defines a three dimensional character array that can hold 300 groups of 12 sets of 25 elements (characters). This array can store three hundred list with twelve song titles each with 25 characters.

DEFINE_VARIABLE
volatile char sCdList[300][12][25];

This defines a four dimensional character array that can hold four divisions each containing 300 groups of 12 sets of 25 elements (characters). This array can store 1200 lists with twelve song titles each with 25 characters.

DEFINE_VARIABLE
volatile char sCdList [4][300][12][25];

This defines a five dimensional character array that can hold twenty sets each containing four divisions of 300 groups of 12 sets of 25 elements (characters). This array can store four divisions of 1200 lists with twelve song titles each with 25 characters.

DEFINE_VARIABLE
volatile char sCdList [20][4][300][12][25];

Now that an array to store song titles has been defined, how much memory will be allocated to this variable?

1 byte *25*12*300*4*20 = 7,200,000 bytes

Data Structures
NetLinx has the ability to define Structures within the NetLinx program. Structures define a new data type, which contains a group or set of member variables. The members define the data contained in the structure and describe the function of the data in the structure. Event properties such as BUTTON.INPUT.CHANNEL, DATA.TEXT, and LEVEL.VALUE are all types of structures.

The Structure is defined within the DEFINE_TYPE section of the NetLinx Program. A structure is defined in the following format:

DEFINE_TYPE
structure _Tag
{
data_type member1;
data_type member2;
data_type member3;
}

Where:
_Tag is a unique identifier given to the structure data_type is any NetLinx data type or previously defined structure

member# is an identifier unique to the structure and can be defined as a single variable or an array

The definition of the structure only outlines the template for the data type. The definition of the structure does not actually reserve any memory.

Using Structures
The first step to creating a Structure is to list the data that is required:

Using the CD collection as an example:
· CHAR TITLE[25]
· INTEGER MIN
· INTEGER SEC

This information will occupy 29 bytes of data for each item.

DEFINE_TYPE
structure _Songs
{
 char sTitle[25];
 integer nMin;
 integer nSec;
}

Now that the Structure has been defined as a new data type, you must define a variable. The variable can be defined as a single variable or an multi-dimensional array.

DEFINE_VARIABLE
struct_tag struct_variable1;
struct_tag struct_array1[3][5]; // 2-Dimensional Structure

Where:
· struct_tag is the structure defined in DEFINE_TYPE. struct_variable1 is a unique identifier for a single instance of the structure struct_array1[3][5] is a two-dimensional array of the structure
· The individual member of the structure can be accessed using the dot operator. For example we can assign values to member1 of the structures above using the following statements:

struct_variable1.member1 = value;
struct_array1[2][2].member1 = value;
Using the dot operator, the members of the structure can be used anywhere a variable of the same data type would be used.

To assign data to a structure variable is slightly different than to an intrinsic variable type. You must reference the variable name and the element of the structure desired. Assigning data to a structure variable array is similar but also includes the array index. For example:

uButSeriously[5].sTitle = ‘Colours’;
uButSeriously[5].nMin = 8;
uButSeriously[5].nSec = 51;
uButSeriously[1].sTitle = ‘Hang In Long Enough’;
uButSeriously[2].sTitle = ‘Thats Just The Way It Is’;

One of the features of NetLinx structures is the ability to use a previously defined Structure in another Structure. For Example:

DEFINE_TYPE
structure _CdInfo
{
 char sTitle[30];
 _Songs uTrack[15];
 integer nRelYear;
 char sGenre[20];
}

_SONGS was defined as a new data type previously. This structure uses an array of the data type _SONGS to list the songs of a CD. The total amount of space that would be allocated to this data type is 487 bytes.

Now that another Structure has been defined as another new data type, it can also be used in the DEFINE_VARIABLE section.

DEFINE_VARIABLE
_Songs uTrack5;
_Songs uBut_Seriously[12];
_CdInfo uCdList[300];
The variable array uCdList occupies 146,100 bytes.

Assigning data to this new structure variable array is similar but also includes the elements of the embedded structure. For example:

CD_LIST[1].CD_TITLE=‘But Seriously’;
CD_LIST[1].TRACK[1].MIN = 8;
CD_LIST[1].TRACK[1].SEC = 51;
CD_LIST[1].TRACK[1].TITLE = ‘Hang In Long Enough’;
CD_LIST[1].TRACK[2].TITLE = ‘Thats Just The Way It Is’;
CD_LIST[1].REL_YEAR = 1987;
CD_LIST[1].GENRE = ‘POP’;

Assigning Values to Multi-dimensional Arrays and Structures
There are a couple things to be aware of when assigning values to arrays and structures:
1. (non-structure) Arrays can be initialized in the DEFINE_VARIABLE section. Arrays with data types other than CHAR and WIDECHAR are initialized inside curly braces, {}, instead of double quotes, " ".
2. Arrays can be declared and initialized as an unsized array using empty square braces, []. The array is initialized to the assigned values, and the maximum length of the array is set to the number of values used in the initialization.

volatile integer array1[] = {10,20,30,40,50};

The array above is initialized to a 5 element array containing the values 10, 20, 30, 40 and 50.

3. User defined Structures can not be initialized inside the DEFINE_VARIABLE section.
4. Elements of multi-dimensional arrays can only be assigned individually outside the DEFINE_VARIABLE section.

array1[3][2] = 15; // RIGHT
array1[3] = {10,15,20}; // WRONG

5. The members of structures can only be assigned individually, except when the member is a CHAR array or string, outside the DEFINE_VARIABLE section.

struct_variable.member1 = 14; // RIGHT
struct_variable.member2 = ’hello’; // RIGHT
struct_variable = {14, ’hello’}; // WRONG

6. Arrays with the same data type, number of dimensions and number of elements can be directly assigned to each other.
7. Structures with the same structure type can be directly assigned to each other.

Data Sets
NetLinx predefines several structures that are designed to work with NetLinx device numbers, channels, and levels. Data sets allow you to group and in essence, combine certain elements of NetLinx devices. There are three data set structures supported by NetLinx: DEV (Device Sets), DEVCHAN (Device-Channel Sets), and DEVLEV (Device-Level Sets). You have already seen the structure DEV structure in the DEFINE_DEVICE section.

The structure DEV in the DEFINE_TYPE section it would look like this:

STRUCTURE DEV
{
 INTEGER DEVICE;
 INTEGER PORT;
 INTEGER SYSTEM;
}

DEV
Devices can also be grouped to allow functions or commands to be issued to the group. NetLinx includes a built-in Structure called a DEV which contains integers for the device number, port number and system number.

The actual instancing of the structure is unique to the DEV structure because you separate the individual structure’s elements with colons instead of enclosing the structure with braces and separating the elements with commas.

An array of devices (otherwise referred to as a dev array) can be created:

DEFINE_VARIABLE
dev daTPs[] = {vdvTP,dvTP1,dvTP2,dvTP3};
dev daVCRs[] = {vdvVCR,dvVCR1,dvVCR2};

These arrays can be used anywhere a device can be used.

button_event[daTPs,4]
data_event[daVCRs]

DEVCHAN
Similar to DEV sets, pairs of device,channels can be grouped. DEVCHAN is a built-in structure which contains the DEV structure and an integer to represent a channel. An array of device,channel pairs can be created:

DEFINE_VARIABLE
devchan dcRelays[] = { {dvRELAY,1}, {dvRELAY,2}, {dvRELAY,3} }

These arrays can be used anywhere a device,channel pair can be used:

button_event[dcTP_Source_Buttons]
on[dcRelays];

Once a Structure is defined that Structure can be used in another Structure. This is done in the DEVCHAN and DEVLEV Structures.

STRUCTURE DEVCHAN
{
 DEV DEVICE;
 INTEGER CHANNEL;
}

STRUCTURE DEVLEV
{
 DEV DEVICE;
 INTEGER LEVEL;
}

DEVCHAN and DEVLEV Structures are initialized in the same way as other NetLinx structures. For example using DEVCHAN we can create a group of buttons on a user interface that are used for similar functions:

devchan dcSwitcherInputs[4] =
{
 {dvTP, 41},
 {dvTP, 42},
 {dvTP, 43},
 {dvTP, 44}
}

This can enable the use of a group of device channel or device level sets as the parameter to an event. DEVLEV is another built-in structure, similar to DEVCHAN, that contains the DEV structure and an integer referring to a level. Using DEVLEV device,level pairs can be grouped.

Combining Devices
Lesson Topics
· DEFINE_COMBINE
· Combining and Uncombining Devices
· Web Control

DEFINE_COMBINE
In general, it is preferred to use DEV, DEVCHAN, or DEVLEV to combine device functionality. However, the DEFINE_COMBINE section also allows the combination of functionally identical devices, such as identically programmed Touch Panels and Keypads. When the program references one of these devices, all other combined devices in the set are also referenced. The Master recognizes all devices in the combine list as the first device listed. This will cause any button pushed on any of the touch panels to respond as if that button was pushed on the first touch panel. Operations are programmed to the first device in the combine list. The set of devices, called a combine list, must be enclosed in parentheses. For example:

DEFINE_COMBINE (VPANEL,PANEL1,PANEL2,PANEL3);

NetLinx provides several methods for combining the functionality of devices. One way you can combine functionality is by stacking event handlers. Stacking events allows you the flexibility to conditionally change what elements of the program shares functionality, but the program can be more difficult to maintain over time than if the panels were combined using
DEFINE_COMBINE.

Virtual Devices
NetLinx uses Virtual Devices. Virtual Devices carry a device number ranging from 32,768 to 36,863, a port number of 1, and a system number of 0.

	[image:]
	A Virtual Device must be in position 1. (see example above)

Virtual Devices are devices that cannot be taken off the bus. By listing a virtual device as the first device in a DEFINE_COMBINE statement or as the first device in a COMBINE_DEVICES, there is always a guaranteed device that is online and syncing with the rest of the group.

DEFINE_DEVICE
dvTP = 10001:1:0;
dvTP2 = 10002:1:0;
vdvTP = 33001:1:0;

DEFINE_START
define_combine(vdvTP, dvTP, dvTP2);

Combining and Uncombining Devices
Once the DEFINE_COMBINE section has been compiled it remains static. To make things more flexible NetLinx has two functions: COMBINE_DEVICES and UNCOMBINE_DEVICES. COMBINE_DEVICES and UNCOMBINE_DEVICES dynamically change the devices combined together. When devices are combined the combine list and DEV set lists are reevaluated and updated during run time.
COMBINE_DEVICES and UNCOMBINE_DEVICES are used as stand-alone statements in an event or mainline or in assignment statements. COMBINE_DEVICES and
UNCOMBINE_DEVICES will return a value of 0 or –1 depending on the success or failure of the operation. The first device in a COMBINE_DEVICES statement should be a Virtual Device. The devices, listed after the virtual device, are either a list of individual device numbers, DEV sets or any combination of devices and DEV sets. The UNCOMBINE_DEVICES statement requires only the first device in the COMBINE_DEVICES list, which should be a Virtual Device. The format for
COMBINE_DEVICES and UNCOMBINE_DEVICES is:

combine_devices(<virtual device>, <device1>, <device2>…);
uncombine_devices(<virtual device>);

Devices combined with COMBINE_DEVICES respond like devices combined using the
DEFINE_COMBINE section. The central controller recognizes any input from the devices in the combine list as the first device in the list.

Bitwise Operations
Lesson Topics
· Bitwise Operators
· BAND
· BOR
· BXOR
· BNOT
· RSHIFT
· LSHIFT

Bitwise operators perform the same logical operations mentioned earlier, but on a bit-by-bit basis. These operators are BAND (&), BOR(|), BXOR (^), and BNOT (~). They are similar to logical operators. For example, the keyword BAND performs a logical AND operation between two bytes on a bit-by-bit basis. Instead of producing a true or false result, bitwise operations form a new byte. For example:

X = $A1 BAND $8A;

The variable X now equals $80 (see FIG. 1). The AND operation is applied to the first bit of each value (1 and 1), setting the first bit of the result to 1. This is done again for each bit of the values, producing a new byte.

FIG. 1 BAND applies the logical operator And on a bit-by-bit basis. Since both bits are true in the first location, the resulting bit is also true.

Operators in that perform bit-by-bit logical operations on one byte or between two bytes. They are similar to logical operators. For example, the keyword BAND performs a logical AND operation between two bytes on a bit-by-bit basis. These operators are:

BAND, BOR, BXOR, BNOT, RSHIFT, and LSHIFT.

BAND - Bitwise AND
Uses BAND keyword or ’&’ symbol
Compares the individual bits of two bytes...returns a byte result
$921 0 0 1 0 0 1 0
BANDBAND
$020 0 0 0 0 0 1 0
==
$020 0 0 0 0 0 1 0
BOR - Bitwise OR
Uses BOR keyword or ’|’
Compares the individual bits of two bytes returns a byte result
$921 0 0 1 0 0 1 0
BORBOR
$020 0 0 0 0 0 1 0
==

$921 0 0 1 0 0 1 0

BXOR - Bitwise Exclusive OR
Uses BXOR keyword or ’^’ symbol
Compares the individual bits of two bytes returns a byte result
$921 0 0 1 0 0 1 0
BXORBXOR
$020 0 0 0 0 0 1 0
==
$901 0 0 1 0 0 0 0
BNOT - Bitwise NOT
Uses BNOT keyword or ’~’ symbol
Compares the individual bits of two bytes returns a byte result

RSHIFT - Right Shift
Uses RSHIFT keyword or ‘>>’ symbol
Moves bit values to the right

FIG. 2 Decreases values by a factor of 2

FIG. 3 Decreases value by a factor of 4

LSHIFT - Left Shift
Uses LSHIFT keyword or ‘<<’ symbol
Moves bit values to the left

FIG. 4 Increases value by a factor of 2

FIG. 5 Increases value by a factor of 4

Assignment Operators
The assignment operators may appear only once in a single NetLinx statement.

	Assignment Operators

	Operator
	Function

	=
	Assignment

	++
	Increment by 1

	--
	Decrement by 1

The following rules apply to the use of assignment operators:
· The "=" operator may be used to assign
· Expressions to intrinsic type variables (see Data Types)
· Arrays to other array of matching size and type
· Structures to other structures of the same type

The "++" and "--" operators are statements, and cannot appear within expressions.

For example:

for (nLoop = 1; nLoop < 10; nLoop++) // Legal
nTemp = nNum++; // Illegal

Operator Precedence
The table below shows the inherent precedence assigned to the operators. As noted in the chart, the NOT (!) operator has the highest precedence in NetLinx systems.

	
	Operator Precedence

	Level
	Operators
	Associability

	1
	! ~
	Left To Right

	2
	* / %
	Left To Right

	3
	<< >>
	Left To Right

	4
	+ -
	Left To Right

	5
	< <= > >= = == <>
	Left To Right

	6
	& | ^
	Left To Right

	7
	&& || ^^
	Left To Right

TCP/IP Communication
Lesson Topics
· IP Comminucation
· Server Programming
· Client Programming

IP Communication
Clients and servers communicate via Internet Protocol (IP) using either a connection-oriented or connection less protocol.

Connection-oriented input/output (I/O) channels require a connection or virtual circuit to be established between the client and server before data can be transmitted or received. Transmission Control Protocol (TCP) is the transport protocol typically used for connection-oriented I/O. With TCP, delivery of the data is guaranteed.

With a connection less I/O, a connection is not established between the client and server before data is exchanged. Instead, the identity of the client and server is established each time data is sent or received. This type of communication is usually recommended for applications that transfer only small amounts of data. User Datagram Protocol (UDP) is the transport protocol used for connection less I/O. With UDP, delivery of the data is not guaranteed.

Both the client and the server must be able to identify incoming and outgoing data for a particular conversation. To achieve this, each application assigns a unique number to the conversation. This number is the local port number. A local port is not a physical port but rather a virtual port on the NetLinx Master that identifies the source or destination for data exchanged during the conversation. Local ports are specific to either the client or the server; they need not match across applications.

The application assigns the number for the local port - as opposed to letting the system assign it (for instance, as the return value for IP_CLIENT_OPEN or IP_SERVER_OPEN) - to satisfy the static nature of DEFINE_EVENT handlers. All event handlers must specify a device, port, and system to identify the events' source. This device information must be constant; that is, it cannot change at run-time. A constant IP device specification can be defined using a local port number. For example:

Device Number = 0 The master
Port = LocalPort The local port number
System = 0 This system (where the application is running)

A NetLinx Master can maintain up to 200 simultaneous TCP/IP connections. This includes connections to NetLinx Studio, NetLinx Diagnostics, URL List entries, and Ethernet devices such as Modero touch panels.

A range of numbers is reserved for local port numbers to make sure that this IP device-naming convention does not interfere with future naming schemes. The program can only assign local port numbers at or above the value of the keyword, FIRST_LOCAL_PORT. All port numbers below FIRST_LOCAL_PORT are reserved for future use. For example:

DEFINE_CONSTANT
PORT_REMOTE_MASTER1 = FIRST_LOCAL_PORT;
PORT_REMOTE_MASTER2 = FIRST_LOCAL_PORT + 1;
PORT_REMOTE_MASTER3 = FIRST_LOCAL_PORT + 2;

Server Programming
Listening for Client Requests
A client gains access to a service by sending a request to the server specifying the port assigned to the service. For the request to be acknowledged, the server must be listening on that port. To do this, the server calls IP_SERVER_OPEN. This opens the port and allows the server to listen for requests from client applications.

IP_SERVER_OPEN requires the caller to supply a local port number. This local port number is a virtual port as opposed to an actual physical port on the server. When TCP is the transport protocol, the local port represents a single client connection on the server's physical port. When UDP is the transport protocol, it represents a single point where all client requests on the associated port are routed.

Review of Requirements:
· An assigned port on the Master
· IP Port number of the application
· TCP or UDP to be specified

The local port number is the key to identifying data sent to or received from a client application. A local port number may not be used in another call to IP_SERVER_OPEN until IP_SERVER_CLOSE is called for that port number. The syntax:

IP_SERVER_OPEN(LocalPort, ServerPort, Protocol);

Parameters:
· LocalPort: The local port number to open. This port number must be passed to IP_CLIENT_CLOSE to close the conversation. Recommended starting port number is 3.
· ServerPort: The port number on the server identifies the program or service the client is requesting.
· Protocol: The transport protocol to use (1 = TCP, 2 = UDP). If this parameter is not specified, TCP (1) is assumed.

Multiple Client Connections
With connection-oriented I/O (TCP), more than one client could request a connection with the server at the same time. Support for multiple client connections applies only to connection-oriented I/O, that is, TCP protocol. Opening multiple ports using UDP as the protocol serves no purpose. In that case, any additional open commands will fail.

To support concurrent requests, the server must call IP_SERVER_OPEN once for each simultaneous connection allowed. For example:

ip_server_open(PORT_REMOTE_MASTER1, 10510, IP_TCP);
ip_server_open(PORT_REMOTE_MASTER2, 10510, IP_TCP);
ip_server_open(PORT_REMOTE_MASTER3, 10510, IP_TCP);

This allows three simultaneous connections on port 10510. Note that each call to IP_SERVER_OPEN uses a different local port number.

Closing a Local Port
To close a local port, the server application must call IP_SERVER_CLOSE. Once that is called, no I/O can be handled using the specified local port. The syntax:

ip_server_close(LocalPort);

Parameters:
· LocalPort: The local port number to close

Connection-oriented Notifications
The server receives the following notifications when a client connects or disconnects. The protocol in this case must be TCP.

data_event[0:LocalPort:0]
{
 online:
 {
 // client has connected
 }
 offline:
 {
 // client has disconnected
 }
}
Where device is (or contains as part of an array) the device representing the conversation (0:LocalPort:0).

Receiving Data
To receive data from a client, use a DATA event handler or a buffer created with
CREATE_BUFFER or CREATE_MULTI_BUFFER. If an event handler is used, the data is located in the Text field of the DATA property. The syntax:

data_event[0:LocalPort:0]
{
 string:
 {
 // process incoming string (data.text)
 }
}

Where device is (or contains as part of an array) the device representing the conversation (0:LocalPort:0).

Sending Data
To send data to the client, use the SEND_STRING command.

send_string 0:LocalPort:0, '<string>';

The device specification (0:LocalPort:0) is interpreted as follows:
· Device Number: 0: The master
· Port: LocalPort: The local port number
· System: 0: This system (the client)

Multicast
NetLinx can send and receive multi-cast UDP messages. To send a multi-cast UDP message, all you need to do is specify a multi-cast address and port in the IP_CLIENT_OPEN function such as the following:

ip_client_open(dvIPClient.Port, '239.255.255.250', 1900, IP_UDP);

To receive multi-cast UDP messages, you must call the IP_MC_SERVER_OPEN function:

ip_mc_server_open(dvIPServer,'239.255.255.250',1900);

The NetLinx master will join the multi-cast session and allow you to receive and transmit UDP multi-cast messages.
Client Programming
Initiating a Conversation
To initiate a conversation with a server, the client must use the IP_CLIENT_OPEN command and supply either the IP address or domain name of the server and a port number for the requested service. The client must also specify a local port number to use for sending and receiving data. This number represents a virtual port on the client machine; it is not the actual port number used to create the client-end socket. A local port number may not be used in another call to IP_CLIENT_OPEN until IP_CLIENT_CLOSE is called for that port number.

Review of Requirements:
· An assigned port on the Master
· IP Address or URL of the device or application
· IP Port number of the application
· TCP or UDP to be specified The syntax is shown below:

ip_client_open(LocalPort, ServerAddress, ServerPort, Protocol);

Parameters:
· LocalPort: A user-defined, non-zero integer value representing the virtual port on the client machine that will be used for this conversation. This port number must be passed to IP_CLIENT_CLOSE to close the conversation. Recommended starting port number is 3.
· ServerAddress: A string containing either the IP address (in dotted-quad-notation) or the domain name of the server to connect to.
· ServerPort: The port number on the server that identifies the program or service the client is requesting.
· Protocol: The transport protocol to use (1 = TCP, 2 = UDP). If this parameter is not specified, TCP (1) is assumed.

Terminating a Conversation
To terminate a conversation you must use the IP_CLIENT_CLOSE command and pass the number of the local port used for the conversation. The syntax:

ip_client_close(LocalPort);

Parameters:
· LocalPort: A user-defined, non-zero integer value representing the virtual port on the client machine that will be used for this conversation

Sending Data
To send data to the server, use the SEND_STRING command.

send_string 0:LocalPort:0, '<string>';

The device specification (0:LocalPort:0) is interpreted as follows:
· Device Number: 0: The master
· Port: LocalPort: The local port number
· System: 0: This system (the client)

Receiving Data
To receive data from the server use a DATA event handler or a buffer created with
CREATE_BUFFER or CREATE_MULTI_BUFFER. It is generally preferable to use a buffer for web scraping, terminal emulation, or RSS/JSON feeds. If an event handler is used, the data is located in the Text field of the DATA property. The syntax is shown below:

data_event[0:LocalPort:0]
{
 string:
 {
 // process incoming string (data.text)
 }
}

Parameters:
Device: Is (or contains as part of an array) the device representing the conversation (0:LocalPort:0)

Example IP Code
PROGRAM_NAME='IPExample'
(***)
(* DEVICE NUMBER DEFINITIONS GO BELOW *) (***)
DEFINE_DEVICE
dvIPServer = 0:3:0;
dvIPClient = 0:4:0;
(***)
(* CONSTANT DEFINITIONS GO BELOW *) (***)
DEFINE_CONSTANT
TCP_IP = 1;
nIPPort = 8000;
(***)
(* VARIABLE DEFINITIONS GO BELOW *) (***)
DEFINE_VARIABLE
 volatile ip_address_struct uIPAddress; (* .Flags *)
 (* .HostName *)
 (* .IPAddress *)
 (* .SubnetMask *)
 (* .Gateway *)
volatile long lPingTime[] = {1000};
constant long lTlPing = 1;
(***)
(* STARTUP CODE GOES BELOW *) (***)
DEFINE_START
get_ip_address(0:0:0, uIPAddress); // Get my IP address
ip_server_open(dvIPServer.Port ,nIPPort, TCP_IP); // Open server
ip_client_open(dvIPClient.Port, MyIPAddress.IPAddress, nIPPort,TCP_IP); // Open client
(***)
(* THE EVENTS GOES BELOW *) (***)
DEFINE_EVENT

data_event[dvIPServer] // Server data handler
{
 onerror:
 {
 send_string 0, "'Error: Server=',itoa(data.number)";
 }
 online:

{
 send_string 0 ,"'Online: Server'";
 }
 offline:
 {
 send_string 0, "'Offline: Server'";
 }
 string:
 {
 send_string 0,"'String: Client= ',data.text";

 if (find_string(data.text, 'ping', 1))
 {
 send_string dvIPServer, "'Pong',13";
 }
 }
}

data_event[dvIPClient] // Client Data Handler
{
 onerror:
 {
 send_string 0,"'Error: Client= ',itoa(data.number)";
 }
 online:
 {
 send_string 0,"'Online: Client'";
 timeline_create(lTlPing, lPingTime, 1, TIMELINE_ABSOLUTE, TIMELINE_REPEAT);
 }
 offline:
 {
 send_string 0, "'Offline: Client'";
 timeline_kill(lTlPing);
 }
 string:
 {
 send_string 0, "'String: Client= ',data.text";
 }
}

timeline_event[lTlPing] // Run 1/sec.
{
 send_string dvIPClient, "'ping',13";
}

Timelines
Lesson Topics
· Timeline Functions
· Timeline Keywords
· Timeline Event

Timelines were originally developed as an improved method for writing show control programs. Timelines are now the preferred method for writing any timed event, repeating sequence, or updating feedback. In general it is advisable to use timelines in place of mainline code since Netlinx is an event based system and programs are processed most efficiently by the event queue.
Timeline Functions
The NetLinx timeline functions provide a mechanism for triggering events based upon a sequence of times. The sequence of times is passed into the timeline functions as an array of LONG values with each value representing a time period (in milliseconds) that is either relative to the start time of the timeline or to the previously triggered event.

WAIT (0.01 Second increments) 
TIME (1 Second increments) ❑ Time of day function
Timelines (1 ms increments)

	[image:]
	Timelines introduce the capability to dynamically set up a timed sequence, provide the user with a mechanism to modify the sequence, and allow the user to create, delete, and modify sequences.

The old way of programming timed sequences was to cascade or nest WAITs. Using nested WAITs hard-coded the timed sequence so the only way to modify the timing was to modify the NetLinx program, recompile, and download. NetLinx is more accurate

· Accurate to 10ms.
· Timelines are measured in 1ms units.
· Waits are measured in 10ms units (0.01s)
· Not affected by mainline if events are used.

Timelines make adding, deleting and editing the sequence much simpler for the programmer. Timeline functions and debugging allow the timings to be modified without the modify/ compile/ download cycle because the array of times may be modified via NetLinx debugging. Once the timings have been tweaked, the changes can be incorporated in the NetLinx program.
Timelines can operate in two modes: Absolute and Relative. In Absolute Timelines, every event time is based upon the start of the timeline. In Relative Timelines, every event time is based upon the occurrence of the last event.

Creating a Timeline
When creating a Timeline you need to list the sequence of events that include:

· Order of the sequence.
· Duration of each event.
· Interdependence of events.
· If one event can’t start before another finishes make sure to note that.

Then, you will want to draw your timeline.
Next, you will want to convert the information from the drawing to a list of times. Time can be specified as absolute or relative:

Absolute
long lTimes[] = {0, 200, 500, 12000, 27000, 45000};

Relative
long lTimes[] = {0, 200, 300, 11500, 15000, 18000};

How long can a timeline run?
· Absolute timeline can run for more than 49 days without repeating!
· Relative timelines can run for more than 8900 years without repeating!

Timeline Keywords
Timelines are created and begin when the TIMELINE_CREATE command is executed.

timeline_create (id, tl_array[], count, tl_mode, tl_repeat);

Where:
id is unique constant that is used to reference the timeline
 
tl_array is a single dimensional LONG array of the timeline times

count is the number of events to be run in the timeline. Typically count is equal to the length of the tl_array.

tl_mode uses either the TIMELINE_ABSOLUTE or TIMELINE_RELATIVE keywords to designate an absolute or relative timeline.

tl_repeat uses either the TIMELINE_REPEAT or TIMELINE_ONCE keywords to designate a looping timeline or a single occurrence timeline.

TIMELINE_CREATE requires five parameters:
· Id
· A constant long to identify the timeline
· Times Array
· An array of LONG values representing when the events should begin.
· Length
· An INTEGER indicating the number of elements in the Times Array
· Type
· Two keywords are provided to indicate the type of values in the Times Array:
· TIMELINE_RELATIVE
· TIMELINE_ABSOLUTE
· Repeat
· Two keywords are provided:
· TIMELINE_ONCE
· TIMELINE_REPEAT

Timelines can be stopped with the TIMELINE_KILL command. When a timeline is killed, it is no longer running and no longer active.

timeline_kill(id);

Timelines can be paused and restarted using the TIMELINE_PAUSE and TIMELINE_RESTART commands. Pausing a timeline keeps the timeline active and maintains the current location within the timeline sequence, similar to pausing a VCR or DVD.

timeline_pause(id);
timeline_restart(id);

Anytime the TIMELINE_CREATE command is executed the tl_array values are reread. Since tl_array is a variable, values can easily be adjusted and updated. tl_array values can also be adjusted and updated dynamically while the timeline is active and running using the TIMELINE_RELOAD command. If the timeline is currently running when the command is issued the new array of times takes effect immediately. The next matching time from the new time array triggers the next TIMELINE_EVENT.

timeline_reload (id, tl_array[], count);

TIMELINE_RELOAD cannot change the mode of the timeline or the repeat status.

TIMELINE_RELOAD can adjust the tl_array times and the number of events in the timeline.

There are several commands that will return the status of a timeline outside the context of an array event.
TIMELINE_ACTIVE will return a value of 1 if the timeline is currently running and a value of 0 if the timeline is currently stopped.

timeline_active(id);

TIMELINE_GET returns the current timer value. TIMELINE_GET returns an absolute time value based upon the start of the timeline, and returns a LONG value in milliseconds.

timeline_get(id);

TIMELINE_SET changes the value of the timer. Like TIMELINE_GET, TIMELINE_SET is an absolute time and is a LONG value based upon the start of the timeline.

timeline_set(id, value);

	Timeline Keywords

	TIMELINE_ACTIVE
	This function is used to determine if a timeline has been created. If the timeline does not exist (i.e. TIMELINE_CREATE has not been called) this function returns zero.
integer timeline_active(long Id)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
Returns:
· 0: Not created
· Non-zero: The timeline has been created
If (timeline_active(TL1)) // if timeline 1 is running{// do something}

	TIMELINE_CREATE
	Creates an initial timeline and specifies the attributes of the timeline.
integer timeline_create(long Id, long Times[],long Length, long Relative, long Repeat)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
· Times: An array of times where each time specifies when a TIMELINE_EVENT will be triggered. The times in the array may be relative to each other or relative to the start of the timeline depending upon the Relative parameter. For an absolute timeline it is NOT necessary for the times in the array to be sorted in any particular order (the NetLinx master does this internally for you). The NetLinx master makes an internal copy of the values in the array allowing the user to modify the passed in array as desired without affecting the operation of the timeline.
· Length: The count of times in the Times array.
· Relative: Indicates whether the Times array contains relative times or absolute times. Relative indicates the each time given is relative to the last event time (i.e. the time delay in between the triggered events). Absolute indicates that each time given is absolute with respect to the start of the timeline.
· Repeat: Indicates whether the timeline should automatically start over again when Length events have been triggered.

	TIMELINE_EVENT
	These events are generated when a timeline's internal timer is equal to one of the specified times in the times array. The TIMELINE_EVENT must be placed in the DEFINE_EVENT section of the program.
timeline_event[timelineID]
See the TIMELINE_CREATE function for a more detailed description.

	TIMELINE_GET
	This function returns the value of the specified timeline's timer. The timer indicates the number of milliseconds that have passed since the timeline started. If the timeline is paused the timer is also paused and subsequent calls to TIMELINE_GET will return the same value.
long timeline_get (long Id)
Parameters:
• Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
This function returns the specified timeline's internal timer. The timer value represents the number of milliseconds that have passed since the timeline started.
timeline_set(TL1, timeline_get(TL1) + 1000); // jump ahead
1 second

	TIMELINE_KILL
	This function is used to terminate a timeline. Any further references to the specified timeline ID are invalid.
integer timeline_kill(long Id)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
Result:
· 0: Successful
· 1: Specified timeline ID invalid
timeline_kill(TL1) // permanently destroy the timeline

	TIMELINE_PAUSE
	This function is used to suspend the execution of a timeline. It may be restarted from where it left off with the TIMELINE_RESTART function.
integer timeline_pause(long Id)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
Result:
· 0: Successful
· 1: Specified timeline ID invalid
timeline_pause(TL1) // momentarily suspend the timeline

	TIMELINE_RELOAD
	This function is used to change the array times of a timeline. The new array of times takes affect immediately even if the timeline is currently executing. If the timeline is executing when this function is called the timeline continues to execute and the next matching time from the new array triggers an event.
integer timeline_reload(long Id, long Times[],long Length)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
· Times: An array of times where each time specifies when a TIMELINE_EVENT will be triggered. The times in the array must utilize the same time base
(TIMELINE_RELATIVE or TIMELINE_ABSOLUTE) as determined by the original call to TIMELINE_CREATE. The NetLinx master makes an internal copy of the values in the array allowing the user to modify the passed in array as desired without affecting the operation of the timeline.
· Length: The count of times in the Times array.
Result:
· 0: Successful
· 1: Timeline ID already in use
· 2: Specified array is not an array of LONGs
· 3: Specified length is greater than the length of the passed array
· 4: Out of memory
lTimeArray = {1000, 1500, 2000};
timeline_reload(TL1, lTimeArray, 3); // Modify the timeline

	TIMELINE_RESTART
	This function is used to continue execution of a timeline that was suspended with
TIMELINE_PAUSE.
integer timeline_restart(long Id)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
Result:
· 0: Successful
· 1: Specified timeline ID invalid
timeline_restart(TL1); // Continue the timeline

	TIMELINE_SET
	This function is used to modify the current timer value of a timeline. The timeline's timer is immediately set to the new value regardless of whether the timeline is executing or not.
integer timeline_set(long Id, long Timer)
Parameters:
· Id: A user defined value that uniquely identifies this timeline. Each timeline must be assigned a unique identifier starting with number one.
· Timer: The new value for the timeline's internal timer.
Result:
· 0: Successful
· 1: Specified timeline ID invalid
· 2: Specified timer value out of range
timeline_set(TL1, 0); // start it over again

TIMELINE_EVENTs
Timelines are represented by the illustration in (FIG. 6). When the TIMELINE_CREATE function is executed, the timeline starts at zero and begins counting. When the timer value equals a value in the TIMES array, a TIMELINE_EVENT is triggered. Within the timeline event, a TIMELINE structure is available to get information about the specific time from the TIMES array that generated the event. When a relative timeline is created, the NetLinx Master converts the provided relative times into absolute times that are stored internally.

FIG. 6
Timeline representation
TIMELINE_CREATE
Timeline.Sequence =
TIMELINE_EVENT[TL1]
Time 0
1000
2000
3000
4000
5000
Time (1mS resolution)
Triggered
1
2
3
4
5

The format for TIMELINE_EVENT is shown below.

timeline_event[id]
{
}

TIMELINE_EVENT does not have any subevents or clauses. The events within TIMELINE_EVENT can be tracked using the data objects present within the event.
The TIMELINE structure contains the following members:

structure TIMELINE
{
 integer ID // User supplied ID
 integer SEQUENCE // Index in Times array
 long TIME // Time since start of timeline
 integer RELATIVE // 0 = absolute 1 = relative
 long REPETITION // # of loops for repeating timeline
}

Each TIMELINE data member is defined as follows:
	ID
	The ID that the user assigned to the timeline in the TIMELINE_CREATE function.

	SEQUENCE
	The index of the time in the Times array that was passed to the TIMELINE_CREATE function. The SEQUENCE data member is used to determine what action to take for the event and is normally decoded with a SWITCH/CASE structure (as shown in the example).

	TIME
	The amount of time that has elapsed since the timeline started. For repeating timelines, the TIME and REPETITION data members can be used to calculate the total amount of time it has been running.

	RELATIVE
	If the timeline is operating in relative mode, this data member is equal to TIMELINE_RELATIVE. If the timeline is absolute, it is equal to TIMELINE_ABSOLUTE.

	REPETITION
	If the timeline was created with TIMELINE_REPEAT, this data member holds the number of times the timeline has been executed. REPETITION contains zero for the first pass through the timeline. Thus, the calculation to determine the total amount of time the timeline has been running is simply:
 TIMELINE.TIME * TIMELINE.REPETITION.

Returns:

	0
	Successful

	1
	Timeline ID already in use

	2
	Specified array is not an array of LONGs

	3
	Specified length is greater than the length of the passed array

	4
	Out of memory

Example:

DEFINE_VARIABLE
long lTimeArray[5];

DEFINE_CONSTANT
TL1 = 1;
TL2 = 2;

DEFINE_EVENT
timeline_event[TL1] // capture all events for Timeline 1
{
 switch(timeline.sequence) // which time was it?
 {
 case 1:
 {
 send_command dvPanel, "'^TXT-1,0,1'";
 }
 case 2:
 {
 send_command dvPanel, "'^TXT-1,0,2'";
 }
 case 3:
 {
 send_command dvPanel, "'^TXT-1,0,3'";
 }
 case 4:
 {
 send_command dvPanel, "'^TXT-1,0,4'";
 }
 case 5:
 {
 send_command dvPanel, "'^TXT-1,0,5'";
 }
 }
}

timeline_event[TL2]
{
 switch(timeline.sequence) // which time was it?
 {
 case 1:
 {
 send_command dvPanel, "'^TXT-1,0,1'";
 }
 case 2:
 {
 send_command dvPanel, "'^TXT-1,0,2'";
 }
 case 3:
 {
 send_command dvPanel, "'^TXT-1,0,3'";
 }
 case 4:
 {
 send_command dvPanel, "'^TXT-1,0,4'";
 }
 case 5:
 {
 send_command dvPanel, "'^TXT-1,0,5'";
 }
 }
}

button_event[dvPanel,1]
{
 push:
 {
 lTimeArray = {1000, 2000, 3000, 4000, 5000};
 timeline_create(TL1, lTimeArray, 5, TIMELINE_ABSOLUTE,TIMELINE_REPEAT);
 }
}
button_event[dvPanel,2]
{
 push:
 {
 lTimeArray = {1000, 1000, 1000, 1000, 1000};
 timeline_create(TL2, lTimeArray, 5, TIMELINE_RELATIVE, TIMELINE_ONCE);
 }
}

The example above creates two timelines (TL1 and TL2) that trigger events at the same rate (once per second).
· TL1 uses TIMELINE_ABSOLUTE to specify that the times in lTimeArray are absolute with respect to the start of the timeline. Since TL1 specifies the TIMELINE_REPEAT, it is also repeating and will generate a TIMELINE_EVENT every second iterating through all five times in a round-robin fashion: 1,2,3,4,5,1,2,3,4,5,1,2,3, and so on.
· TL2 uses TIMELINE_RELATIVE to specify that the times in lTimeArray are relative to each other (i.e. each events occurs 1000 milliseconds after the previous). Since TL2 specifies the TIMELINE_ONCE parameter, it will execute the entire timeline once, then stop: 1,2,3,4,5.

Master to Master
Lesson Topics
· Master Routing
· Design Considerations and Constraints

The functionality of master-to-master (M2M) includes several features including master routing and intersystem control. Master routing supports the ability to route messages to any other master or device and is the foundation of all M2M functionality. Intersystem control allows a master, or its NetLinx program, to control and get status of any other device (or master) that is connected to any other master.
FIG. 1 depicts a typical system of two interconnected NetLinx Control Systems with several devices connected to each one. The top portion of the illustration shows the physical connections and the devices represented. The bottom portion shows the logical connections that have been assigned.

FIG. 1 Physical and logical connections

Master Routing
The implementation of master routing primarily involves the communication of routing tables between masters. Routing tables are exchanged between masters upon their initial connection and updates to the routing tables are exchanged as the connections change.

NetLinx masters do not automatically connect to other NetLinx masters by virtue of being on the same network. The URL List of the NetLinx master is used to force the master to initiate a TCP connection to the specified URL/IP address. Therefore, the first step in assembling an M2M system is to setup the URL in at least one of the masters to point to the other master. For example, in FIG. 1 NetLinx Master System #1 could have its URL set with a single entry that contains the IP address of the NetLinx Master System #7.

Note that any TCP/IP device, including NetLinx masters, which utilize DHCP to obtain its TCP/IP configuration are subject to having their IP address change at any time. Therefore, NetLinx master’s IP address must be static unless the network supports Dynamic DNS AND a DHCP server capable of updating the DNS tables on behalf of the DHCP client. If Dynamic DNS/DHCP server are available then the NetLinx master’s host name may be used in the URL list.

Once the systems are connected to each other they exchange routing information such that each master will learn about all the masters connected to the other. Consider the following system of interconnected NetLinx masters:

FIG. 2 Interconnected NetLinx Masters

The arrows depict the direction of the initiated connection. For example System #1 initiated the connection to System #2 by having the IP address of System #2 in its URL List.

As a diagnostic aid, the "show route" command can be issued from a telnet session to show how masters are connected to each other.

>show route
 Route Data:
 System Route Metric PhyAddress

2 2 TCP Socket=18 IP=192.168.12.76 Index=3
2 1 TCP Socket=18 IP=192.168.12.76 Index=3
2 2 TCP Socket=18 IP=192.168.12.76 Index=3
4 1 TCP Socket=16 IP=192.168.12.80 Index=1
-> 5 5 0 AXlink
106 106 1 TCP Socket=19 IP=192.168.12.106 Index=2
111 106 2 TCP Socket=19 IP=192.168.12.106 Index=2
The "->" to the left of system number 5 indicates that system number 5 is the local system (i.e. the system that the telnet session is connected to). The System column lists all of the systems that are in the master’s routing table. The Route column indicates which system number packets are to be routed to in order to get to the destination. For example, to send a message from system #5 to system #1 the message must be sent to/through system #2. You can see this visually in Illustration 2 or by examining the Route entry for System #1 in the "show route" table.

The Metric column indicates the number of system masters that the message must transverse in order to get to its destination. In FIG. 2, the metric is 2 because the message must enter system #2, then system #1. Note that a metric of 16 indicates a "dead" route (i.e. a "dead" route is a route that used to exist but is no longer valid). Further, since the maximum usable metric is 15 there is a limit
of 16 masters in the width plus height of the master topology (see section 2.1.1 Design Considerations and Constraints).

The PhyAddress column indicates the internal connection parameters used by the master to maintain the connection information.

The end result of all this routing and connection data is that any device or master can communicate with any other device or master regardless of the physical connection of the device. Note that masters may only be "connected" to each other via Ethernet/TCP/IP. As an example (using FIG. 1), NetLinx Studio is running on a PC that is connected to System #7 as device number 32002. The routing capabilities of the NetLinx master allow NetLinx Studio to download IR codes to the EXB-IRS4 (S=7 D=5104), download a master firmware upgrades to NetLinx master #1, and download new touch panel pages to the touch panel on master #1. All of this is possible simply by having NetLinx Studio connected to a NetLinx master with M2M firmware.

Design Considerations and Constraints
The routing metric limit of 15 usable hops imposes some constraints on the logical topology of the interconnected NetLinx masters. While the limit of 15 hops may seem very limiting especially if a linear connection is created, this is not really the case if you carefully architect the topology.

When determining the interconnection topology of many NetLinx masters, special consideration should be made to have masters that communicate much information with each other to connect to each other. Thus if you have two systems that share devices, control, or information they should be side-by-side in the topology and not at opposite ends of the connection matrix where each message is forced to pass through several NetLinx masters. FIG. 3 displays 20 systems connected in a linear fashion. Unfortunately for this design, if the program in Master 1 needed to control a device on Master 17, the message would be discarded by Master 16 since the message would have traversed through 15 masters thus exceeding the 15 hop limit.

M 1
M 2
M 3
M 4
M 5
M 6
M 7
M 8
M 9
M 10
M 20
M 19
M 18
M 17
M 16
M 15
M 14
M 13
M 12
M 11

FIG. 3 Interconnection Topology
The 15 hop limit can easily be remedied by adding a connection between Master 1 and Master 20 (adding an entry for one master in the URL list of the other).

M 1
M 2
M 3
M 4
M 5
M 6
M 7
M 8
M 9
M 10
M 20
M 19
M 18
M 17
M 16
M 15
M 14
M 13
M 12
M 11

FIG. 4 Interconnection Topology with a connection between Master 1 and Master 20
On the following page an example of radial topology is shown (FIG. 5). This indicates how more than 64,000 masters can be connected using only 40 entries in each URL list and limiting the number of hops between any Master to 6 or less.

FIG. 5 Radial Connection Topology
General Master-to-Master Issues
When multiple masters exist within a large NetLinx installation, the significance of the System number component cannot be over emphasized. Out of habit, it is easy to ignore the system field within NetLinx Studio because its value has no real meaning until M2M is utilized.

When NetLinx Studio connects to a single master, yet allows the user to access all other system masters, some confusion will occur. Therefore, it is a good idea to document each system's, number and the topology of the interconnections.

Appendix - Keywords
This is a list of all AMX programming keywords.
	#define
	define_program
	pause_all_wait

	#end_if_
	define_start
	pause_wait

	#if_defined
	define_toggling
	persistent

	#if_not_defined
	define_type
	program_name

	date
	define_variable
	pulse

	file
	dev
	push

	ldate
	devchan
	push_channel

	line
	device_id
	push_devchan

	name
	device_id_string
	push_device

	time
	devlev
	random_number

	version
	do_push
	redirect_string

	active
	do_release
	release

	and(&&)
	double
	release_channel

	atoi
	else
	release_devchan

	band(&)
	external_control
	release_device

	bnot(~)
	find_string
	remove_string

	bor(|)
	first_local_port
	repeat

	break
	float
	restart_all_wait

	button_event
	for
	restart_wait

	bxor(^)
	get_buffer_char
	return

	call
	get_multi_buffer_string
	right_string

	cancel_all_wait
	get_pulse_time
	rshift

	cancel_all_wait_until
	get_timer
	select...active

	cancel_wait
	hold
	send_command

	cancel_wait_until
	if
	send_level

	case
	include
	send_string

	channel_event
	integer
	set_length_string

	char
	itoa
	set_pulse_time

	clear_buffer
	itohex
	set_timmer

	combine_channels
	ldate
	sinteger

	combine_devices
	left_string
	slong

	combine_levels
	length_string
	stack_var

	command
	level_event
	string

	compare_strings
	local_var
	structure

	constant
	long
	switch...case

	create_buffer
	long_while
	system_call

	create_level
	lower_string
	system_number

	create_multi_buffer
	lshift
	system_reset

	data_event
	master_slot
	time

	date
	master_sn
	timed_wait_until

	day
	
	to

	default
	mid_string
	total_off

	define_call
	min_to
	uncombine_channels

	define_combine
	module_name
	uncombine_devices

	define_connect_level
	non_volatile
	uncombine_levels

	define_constant
	not(!)
	upper_string

	define_device
	off
	volatile

	define_event
	offline
	wait

	define_function
	on
	wait_until

	define_latching
	onerror
	while

	define_module
	online
	widechar

	define_mutually_exclusive
	or(||)
	xor(^^)

Appendix - Embedded Event Data Properties

	BUTTON_EVENT Data Properties
	

	Property Name
	Data Type
	Description

	button.input
	devchan
	[device,channel]

	button.input.device
	dev
	Device (d:p:s)

	button.input.device.number
	integer
	Device Number

	button.input.device.port
	integer
	Device Port Number

	button.input.device.system
	integer
	Device System Number (not zero)

	button.input.channel
	integer
	Channel Number

	button.holdtime
	long
	Current Hold Time (milliseconds)

	button.sourcedev
	dev
	Source device of button event

	button.sourcedev.number
	integer
	Source device number

	button.sourcedev.port
	integer
	Source device port

	button.sourcedev.system
	integer
	Source device system. If the event handler is specified using an array for DEV,CHANNEL, or a DEVCHAN array, GET_LAST can determine which index in the array caused the event to run.

	CHANNEL_EVENT Data Properties
	

	Property Name
	Data Type
	Description

	channel.device
	dev
	Device (d:p:s)

	channel.device.number
	integer
	Device Number

	channel.device.port
	integer
	Device Port Number

	channel.device.system
	integer
	Device System Number (not zero)

	channel.channel
	integer
	Channel Number

	channel.sourcedev
	dev
	Source Device of Channel Event

	channel.sourcedev.number
	integer
	Source Device Number

	channel.sourcedev.port
	integer
	Source Device Port

	channel.sourcedev.system
	integer
	Source Device System. If the event handler is specified using an array for DEV, CHANNEL, or a DEVCHAN array, GET_LAST can be used to determine which index in the array caused the event to run.

	DATA_EVENT Data Properties
	

	Property Name
	Data Type
	Description

	data.device
	dev
	Device (d:p:s)

	data.device.number
	integer
	Device Number

	data.device.port
	integer
	Device Port Number

	data.device.system
	integer
	Device System Number (not zero)

	data.number
	long
	Event Number

	data.sourcedev
	dev
	Source Device of Data Event

	data.sourcedev.number
	integer
	Source Device Number

	data.sourcedev.port
	integer
	Source Device Port

	data.sourcedev.system
	integer
	Source Device System

	data.sourceip
	char array
	Text associated with IP address

	data.text
	char array
	Text associated with the event

	LEVEL_EVENT Data Properties
	

	Property Name
	Data Type
	Description

	level.input
	devchan
	[device,channel]

	level.input.device
	dev
	Device (d:p:s)

	level.device.number
	integer
	Device Number

	level.device.port
	integer
	Device Port Number

	level.device.system
	integer
	Device System Number (not zero)

	level.input.number
	integer
	Level Number

	level.value
	numeric
	Level Value

	level.sourcedev
	dev
	Source Device of Level Event

	level.sourcedev.number
	integer
	Source Device Number

	level.sourcedev.port
	integer
	Source Device Port

	level.sourcedev.system
	integer
	Source Device System

	TIMELINE_EVENT Data Properties
	

	Property Name
	Data Type
	Description

	timeline.id
	integer
	ID of Timeline

	timeline.sequence
	integer
	Indexed Sequence of Event

	timeline.time
	char array
	Time the event occurred

	timeline.relative
	integer
	Set if the timeline is relative

	timeline.repetition
	integer
	Number of times the timeline has repeated (starting at 0)

Appendix - IR Functions
Hand Control IR Functions - Standard Channel Order
	Function
	Description
	Function
	Description

	1
	play >
	22
	channel up or +

	2
	stop []
	23
	channel down or -

	3
	pause I I or still
	24
	volume up or +

	4
	ffwd >>
	25
	volume down or -

	5
	rewind <<
	26
	mute

	6
	search fwd >>I (AMS music search fwd for CD)
	27
	on (power typically) Discrete ON

	7
	search rev I<< (AMS music search fwd for CD)
	28
	off (power typically) Discrete OFF

	8
	record
	29
	TV/Video or TV/VCR or TV/LDP (one button source selection)

	9
	power or on/off
	30
	TV

	10
	‘0‘ or ‘10‘
	31
	Video1, LineA, VCR1, VDP, or input +

	11
	‘1‘ (channel digits or tracks for CD)
	32
	Video2, Line B, VCR2, or input -

	12
	‘2‘
	33
	Video3

	13
	‘3‘
	34
	RGB1 or Tape1

	14
	‘4‘
	35
	RGB2 or Tape2

	15
	‘5‘
	36
	CD

	16
	‘6‘
	37
	tuner

	17
	‘7‘
	38
	phono

	18
	‘8‘
	39
	aux

	19
	‘9‘
	40
	AM/FM

	20
	‘+10 (for CD players typically)
	41
	play < (play reverse)

	21
	enter (used in conjunction with numbers typically)
	42
	A/B

Appendix: ASCII Code Chart
The table lists the hexadecimal values for all ASCII characters.

Appendix - NetLinx Ethernet Information
Scope
This document covers the topic of the NetLinx master's use of Ethernet network interface. The purpose of this document is to provide information to network administrators, IT professionals, and persons installing and configuring a NetLinx master.

Ethernet Physical Interface
The Ethernet interface supports 10 and 100 Mbps for both full and half-duplex modes of operation and is compliant with the IEEE 802.3 100BASE-T specification. The unit, by default, enters autonegotiate mode, which automatically detects and configures itself for operation on the network to which it's connected. It is possible to force the mode of operation (10Mbps half, 10Mbps full, 100Mbps half, or 100Mbps full) via software configuration.

Protocol Stack
The NetLinx master's software runs a single protocol stack-the IP protocol. Of the IP protocol, both UDP and TCP are managed and utilized. The NetLinx master's IP address configuration may be either static or DHCP. The DHCP client conforms to RFC1541 with support for option 12 (Host name) of RFC1533. The inclusion of the Host Name option in the DHCP client allows DHCP servers that support updating dynamic DNS tables to add the NetLinx masters host name to the DNS.

Application Protocols
The NetLinx master implements the following protocols:
ICSP (port 1319 UDP/TCP)- The Internet Control System Protocol (ICSP) was developed by AMX to facilitate Control System communication and management. The ICSP protocol has been registered with the Internet Assigned Numbers Authority (www.iana.org) and should not conflict with any other protocol used on the network. ICSP is a peer-to-peer protocol used for both master-to-master and master-to-device communications. For maximum flexibility, the NetLinx master can be configured to utilize a different port than 1319 or disable ICSP over Ethernet completely from either Telnet or the Program Port located on the NetLinx master itself.
Telnet (port 23 TCP) - The NetLinx telnet server provides a mechanism to configure and diagnose a NetLinx system. For maximum flexibility, the NetLinx master can be configured to utilize a different port than 23 or disable Telnet completely from either Telnet or the Program Port located on the NetLinx master itself. Once disabled, the only way to enable Telnet again is from the NetLinx master's program port.
HTTP (port 80 TCP) - The master has a built-in web server that complies with the HTTP 1.0 specification and supports all of the required features of HTTP v1.1.
FTP (port 21/20 TCP) - The built-in FTP server conforms to RFC959

Internet Inside (port 10500 TCP)(Legacy) - The Internet Inside feature of the NetLinx master uses, by default, port 10500 for the XML based communication protocol. This port is connected to by client web browser's JVM when Internet Inside control pages are retrieved from the NetLinx master's web server. For maximum flexibility, the NetLinx master can be configured to utilize a different port than 10500 or to disable Internet Inside completely.
Network Bandwidth Utilization
The following section is intended to provide information regarding the amount of Ethernet network bandwidth that a NetLinx master will utilize. The actual bandwidth used by the NetLinx master will vary depending upon the end application, number of ICSP Ethernet devices, amount of data generated by the controlled (end-point) device, etc.

The source of network packets may come from any of the application protocols mentioned in the previous section. HTTP, FTP, and Telnet protocols are well understood and the full implications, with respect to network utilization, of their usage are not covered by this document. However, they require interaction with a user and, therefore, their network utilization is very sporadic.

Regarding ICSP, the NetLinx master generates a UDP broadcast message of 60 bytes every five seconds. The following information pertains to a quiescent system, which has no "events" occurring. For every Ethernet ICSP device (including other NetLinx masters) that's connected TCP, there are two outbound messages and one response every five seconds. The outbound messages are 29 bytes and 60 bytes, while the inbound response is 40 bytes.

An "event" in NetLinx is defined as a button press on a user interface, a level value change, or other control message. By their nature, control messages are relatively short and infrequent. For example, a button press message is 33 bytes long…for each button press event there is a corresponding button release event that occurs (also 33 bytes long).

The following table shows the percentage of network bandwidth utilization for a 10Mbps network with a number of ICSP devices (or NetLinx masters) connected to a NetLinx master.

	Number of Devices
(ICSP Over Ethernet)
	Bytes/Sec
	% Approx.
Utilization
(10Mbps)

	1
	12
	0.00%

	2
	37.8
	0.00%

	3
	75.6
	0.01%

	10
	340.2
	0.03%

	50
	1852.2
	0.19%

	100
	3742.2
	0.37%

	1000
	37762.2
	3.78%

Internet Inside uses an XML representation of the ICSP data to facilitate Java client application communications with the master. The following information pertains to a quiescent system, which has no "events" occurring. For every Internet Inside device that's connected TCP, there is a single outbound message and one response message every five seconds. Both messages are approximately 500 bytes long. Additionally, the Java client sends a single message to the master that requires one response. These occur every ten seconds and each is approximately 500 bytes.

An "event" in NetLinx is defined as a button press on a user interface, a level value change, or other control message. For example, a button press message is approximately 500 bytes long…for each button press event there is a corresponding button release event that occurs (also ~500 bytes long).

The following table shows the percentage of network bandwidth utilization for a 10Mbps network with a number of Internet Inside device connected to a NetLinx master.

	Number of Devices
(ICSP Over Ethernet)
	Bytes/Sec
	% Approx.
Utilization
(10Mbps)

	1
	300
	0.03%

	2
	600
	0.06%

	3
	900
	0.09%

	10
	3000
	0.30%

	50
	15000
	1.50%

	100
	30000
	3.00%

	1000
	300000
	30.00%

Appendix - Troubleshooting
ESCAPE
The key to troubleshooting any problem including an AMX control system is a structured approach.
Explain the problem completely
Switches and Settings should be checked
Cables and Connectors should be checked
Attributes should be verified
Programming should be verified
Equipment should be checked

Explain
You need to get as much detail as you can about the problem. When does happen? What makes the problem occur?

Switches and Settings
Make sure that all the switches and other settings on both the AMX system and the controlled device are set correctly. Do the communication settings match? Is the device address set correctly?

Cables and Connectors
Are the cables seated properly and firmly? Are all required wires connected in each connector? Is the cable wired correctly?

Attributes
Make sure all properties are set correctly. Is the button set to the right type? Is it part of a Mutually Exclusive Group? Is the carrier and data type set correctly for an IR/Serial deice? Are the communication parameters set correctly on the NX/NI Series?

Programming
The program should never be the first solution to a problem if the system worked correctly previously. Does the programming do what the customer wants? Has the program been modified?

Equipment
If everything else checks out okay then it could be a faulty piece of equipment. Verify that the device is working properly. Verify that the controlled device is working properly.

	[image:]
	For FAQ’s and Tips you can go to the Technical Support page on AMX.com.

Troubleshooting Tools
Terminal Window
In the NetLinx Studio choose Tools > Terminal to open the Terminal Emulator window.

The Terminal Emulator window puts the Master Controller into terminal control mode. Anything that is typed on the screen exits through the Master communications port, and anything coming in from the communications port is displayed on your monitor. The Terminal Emulator window communicates directly with the Master Controller and can be used to debug RS-232-controlled devices.
· You cannot use the Terminal Emulator window while a communication port is in use for a file transfer operation.
· Type "ECHO ON" in the Terminal Emulator window display messages.
· To use the Terminal Emulator with NetLinx systems, you must be connected to the Master via the PROGRAM port. Otherwise, you can use Windows TelNet for terminal control of NetLinx systems via an Ethernet connection.

Ethernet Cable Troubleshooting
Look for the following things when troubleshooting Ethernets:
· With 10Base-T & 100Base-TX, make sure that the cable used has the correct number of twists to meet the data grade specifications.
· Electrical interference can be caused by tying the network cable together with monitor and power cords. Outside interference also can be caused by fluorescent lights, electric motors, and other electrical devices.
· Make sure that connectors are pinned properly and crimped tightly.
· Check the cable lengths to make sure that distance specifications are not exceeded.
· If excess shielding on coax cable is exposed, it may be grounding out the connector.
· Make sure that coax cables are not coiled tightly together.
· Check the grade of the cable being used. For thinnet, RG-58 A/U is required. Thick net cable must meet Ethernet specifications.
· If using a linear bus setup, make sure that the topology rules are followed.
· Check for missing terminator or terminators with improper impedance ratings.
· Make sure that all the component cables in a segment are connected together. A user who moves his workstation and removes the T-connector incorrectly can cause a broken segment.
[bookmark: _GoBack]
[image: College_of_AMX_stacked_whit]	

 3000 RESEARCH DRIVE, RICHARDSON, TX 75082 | 800.222.0193 | 469.624.8000 | 469.624.7153 fax | www.amx.com

image2.PNG
NetLinx Studio - AVX_NFC_DB Mod =
FEile Edit View Project Build Diagnostics Debug Tools Settings Window Help

Dos aAd@ 5 8o D0 %% & 2ANRS. AOFN e LR EE.
EEEE Y] A YR VORE WM. BE0d e BEM?

& el e e MR B8+ =,
Workspace Bar 8
T8 Workspace ‘AMX University Instructor' 1 Project | 5 File.RW
& Advanced dlass — -
o i 192168151 1 —PROGRAM_NAME= File RN
& saurce
(= AMXNFC DB Mod
Incuce 1 = MODULE_NAME= ‘ANX_NFC_DB Mod -
& Hodie 2
5 < o e ©
User nterface
o 2 |(x DEVICE NUMBER DEFINITIONS GO BELOW |=
s 51| (o0 x xR SRR SRR AR SRR R
5@ il Operstions Exercse [10.35.46.66] 6 =DEFINE_DEVICE
& source E L4
@“’—“W 8 dvTP_NFC 10001:1:0 ;
Incde 9 |duDB_Server = 0:4:0 ;
User Inerface 10
b T [—————————
@ otrer 2 (= CONSTANT DEFINITIONS GO BELOW
15| (5 R R SRR R SRR SRR RS AR ES
D 14 =DEFINE_CONSTANT
s
T\ Worksace [T8 onne ree] @ Rosta] [g ane w06 oa [T P
Output Bar 8
Compressing Source Code Files... B

Created SRC File: C:\Users\Sean Cameron\Documents\AMX\Netlinx ProjectsProgramming Manual 2015\AMX_NFC_D_Mod.src
NetLinx Compile Complete [02-16-2015 11:09:25]

T\ Stotus [Findn Fis |_Fnd I i | e TransterSatus] _Notiications |_Disgosics v

Ready ot [Wort Pushnacive 19216815 Ln 15,Col 1 AP OVRINL

image3.png
NetLinx Studio - AVX_NFC_DB Mod =
FEile Edit View Project Build Diagnostics Debug Tools Settings Window Help

Dos aAd@ 5 8o D0 %% & 2ANRS. AOFN e LR EE.
EEEE Y] A YR VORE WM. BE0d e BEM?

& el e e MR B8+ =,
Workspace Bar 8
T8 Workspace ‘AMX University Instructor' 1 Project | 5 File.RW
& Advanced dlass — -
o i 192168151 1 —PROGRAM_NAME= File RN
& saurce
(= AMXNFC DB Mod
Incuce 1 = MODULE_NAME= ‘ANX_NFC_DB Mod -
& Hodie 2
5 < o e ©
User nterface
o 2 |(x DEVICE NUMBER DEFINITIONS GO BELOW |=
s 51| (o0 x xR SRR SRR AR SRR R
5@ il Operstions Exercse [10.35.46.66] 6 =DEFINE_DEVICE
& source E L4
@“’—“W 8 dvTP_NFC 10001:1:0 ;
Incde 9 |duDB_Server = 0:4:0 ;
User Inerface 10
b T [—————————
@ otrer 2 (= CONSTANT DEFINITIONS GO BELOW
15| (5 R R SRR R SRR SRR RS AR ES
D 14 =DEFINE_CONSTANT
s
T\ Worksace [T8 onne ree] @ Rosta] [g ane w06 oa [T P
Output Bar 8
Compressing Source Code Files... B

Created SRC File: C:\Users\Sean Cameron\Documents\AMX\Netlinx ProjectsProgramming Manual 2015\AMX_NFC_D_Mod.src
NetLinx Compile Complete [02-16-2015 11:09:25]

T\ Stotus [Findn Fis |_Fnd I i | e TransterSatus] _Notiications |_Disgosics v

Ready ot [Wort Pushnacive 19216815 Ln 15,Col 1 AP OVRINL

image4.png
Preferences
(e e—
f——

Online Tree - Zero Config

Eoreground Color

Background Color

Appication Color Schemes

WS Office 2010 (Bl)

MS Offce 2010 (Siver)

WS Office 2010 (Black)
(Carbon

Visual Studio 2012 (Lght)
Visual Studio 2012 (Dark)
MS Offce 2013 (Whte)
S Offce 2013 (Light Gray)

S Ofce 2015 Do)

image5.png
Editor - Display and Identations
Editor - Highlighting and Fonts
Workspace

General

Terminal - ELNET Windows
File Transter

Diagnostics

Online Tree - Zero Config.

ot]

Enable _WC Preprocessor (Lricode)

[C:\Program Fies x86)\Common Fies\ANXShare\SYCs

Debug Options.
Leave Debug Variable Window Open when Debug Session is Closed

Activate the "Main AXS" Source Cods il when Starting a Debug Session

[ok) [Ceamed]

image6.png
Preferences
Netlink Compiler

Editor - Display and Identations.

Workspace
General

Terminal - ELNET Windows
File Transter

Diagnostics

Online Tree - Zero Config.

Background Color

et Coore

Text Color

foplyto Al

[Clgod
[Claic

Defauit Setings

Only Fged-Pich Forts

image7.png
fp—
(et r—
-
S —

Online Tree - Zero Config.

Enable UTF-8fomt to display Hebrew,
Arabic, Cyrlic, and Han characters

fim Blarks at the End of a Line:
Enable Column Edge Marker

ol Edge: (20|

Retain Bookmarks upon closing o Fie.
Highight Matching Braces

Tabs and Indentation Preferences

Settabsiopsevery 8 characters.

Indert beforetext with 4 cheracters.

Enable Ao-indentation

image8.png
Display Optionss

esiors Wikspass on Siatup)

Diplay System Configuration Setting n the Iderifier
Show IR Tab.

Show Zero Config Tab.

Netlink Compiler

Editor - Display and Identations.

Editor - Highlighting and Fonts

General

Terminal - ELNET Windows
File Transter

Diagnostics

Online Tree - Zero Config

When Closing the Workspace
© Close Associated Fies without Prompting
© Aways Prompt before Closing Associated Fles:
© Do not Prompt or Close Associated Files

When Removing a il from the Workspace.
© Close File without Prompting

© Aways Prompt before Closing Fie.
© Donot Prompt or Close File:

image9.jpg

image10.png
Device Addressing

Device/System Change of Address Options IDMode
Device to Change
Deyice: 32002 pewDevice: 5101 e
Change Device Change to Device:
Device: 0
System to Change -
System: 1 New System: | 0 s
[Clchange system
Start Identfy Mode

oereteaiee) p—
‘Set Device/System to Factory Default

image11.png
Device Addressing

Device/System Change of Address Options DMode
Device to Change
Deyice: 0 New Device: | 0 L.
[C] change Device: Change to Device
Device: 5101
System to Change B
System: 1 NewSystem: | © Systema | 1
[Clchange system

Changs Device/System Number

Set Device/Systemto Factory Defaut

Reboot Master

image12.png
Device Addressing

Device/System Change of Address Options DMode
Device to Change
Deyice: 0 New Device: | 0 L.
[C] change Device: Change to Device
Device: 5101
System to Change B
System: 1 NewSystem: | © Systema | 1
[Clchange system

Changs Device/System Number

Set Device/Systemto Factory Defaut

Reboot Master

image12.jpg
De:

e Addressing

Device/System Change of Addess Dptons
Device ta Change.

Deyice: [0 New Devies: [1

I” Change Device.

Systemto Change.

e New Systen;

I Change System

Chanae Device/Bystem Hurber

Set Device/System to Factory Default

D Mode

Destination System:

[-Change to Device

Device: [5001
Suster: [T

Stat iy Mode.

Previous D!

Done.

image14.jpeg
De:

e Addressing

Device/System Change of Addess Dptons
Device ta Change.

Deyice: [0 New Devies: [1

I” Change Device.

Systemto Change.

e New Systen;

I Change System

Chanae Device/Bystem Hurber

Set Device/System to Factory Default

D Mode

Destination System:

[-Change to Device

Device: [5001
Suster: [T

Stat iy Mode.

Previous D!

Done.

image13.png
e ey e W | Sy Tk

Rear/right view

CardFrame Number
DIP switch

NetLinx CardFrame

image14.jpg

image15.png
e ey e W | Sy Tk

Rear/right view

CardFrame Number
DIP switch

NetLinx CardFrame

image16.jpeg

image17.png
W 0P Switch 20 o o s
le Help

Ak,) Netline | Trnsmiters

CardFrame Device Numbers

CadFrame Nurber: |25
Slot 1 Device Number. [301
Slot 12 Device Number: [572

Master Program Port

Baud Program Fun Disable
@ fiTE200 & Noml Dissled)
« 5700 € PRD Moge Enabled
« 3si00

Switches 2,3 and 4 are reserved for fulure
© w0 features and should always remain set to the
O (down) posiion.

image18.png

image19.png

image20.png

image21.png

image22.jpg
Master Communication Settings

Avaible Systens) Configuraton Setings.

M Aot SytemDefat Setigs> Syt
B <Temina Setings> I o |
Prog3 Class (Rev 0)

=@ AMX Progiammer Configuration:

image23.jpg
Communication Settings
[~ Platforn Sefection —| 1~ Transpot Connection Option
& NellineMaster || @ ICPAP
C ucessMaster | | € Seil

€ Moden
o Corcl

image24.jpg
TCP/IP Settings [x]

ICP/P Address: [oK
Eat i35 Seletfom Hisoy: Concel

¥ Automaicall Ping the Master Conlrolr to ensure avalabiy

image25.jpg
Com Port B
BaudRate[38400 7] Cancel
[r—|
Paity[None 7]
sopBis[T 7]

Flow Contiok [None -

image26.PNG
L)

(= DEVICE NUMBER DEFINITIONS GO BELOW *)
(FXE AR R R R AR KRR AR KRR AR AR AR)

DEFINE_DEVICE

L)

(= CONSTANT DEFINITIONS GO BELOW *)
(FXE AR R R R R AR KRR AR R RS)

DEFINE_CONSTANT

L)

(= DATA TYPE DEFINITIONS GO BELOW *)
(FHE AR AR R AR AR KRR AR KRR AR AR AR)

DEFINE_TYPE

L)

(= VARIABLE DEFINITIONS GO BELOW *)
(FHR AR AR AR AR KRR AR KRR AR AR)

DEFINE_VARIABLE

L)

(= LATCHING DEFINITIONS GO BELOW *)
(FHE AR R R R KRR AR KRR AR AR AR)

DEFINE_LATCHING

L)

(= MUTUALLY EXCLUSIVE DEFINITIONS GO BELOW *)
(FXE AR AR R AR AR AR AR R R AR AR)

DEFINE_MUTUALLY_EXCLUSIVE

image27.jpeg
(FRRRERRRRREERR KRR REEERRRREEERR LR R R R REERK)

(* STARTUP CODE GOES BELOW %)
B

DEFINE_START

// BluRay Player Commands

sBluRayCommands[1] = "$02,$67, 'PLAYFD ', $0D
sBluRayCommands[2] = "$02,$67,'STP ',$@D'
sBluRayCommands[3] = "$02,$07, 'PLAYPAU",$D
sBluRayCommands[4] = "$02,$07, 'SkP+ ',$@D’
sBluRayCommands[5] = "$02,$07, 'SkP- ',$@D’
sBluRayCommands[6] = "$02,$07, 'PLAYFFI ', $@D
sBluRayCommands[7] = "$02,$07, 'PLAYFEW ", $@D

create_buffer dvBluRay, sBluRayBuffer
timeline_create(TL_FB, 1FbTime, 1,TIMELINE_ABSOLUTE, TIMELINE_REPEAT);

nRebootCounter++;

(FHE R R R R R KR KRR KRR KRR R AR)

(* THE EVENTS GO BELOW *)
(FHRE R R KRR R R R AR RS AR AR AR R AR KR AR)

DEFINE_EVENT

button_event[duTP,PLAY]

{
push:

{
¥

send_command dvBLuRay, "sBluRayCommands[PLAY]"

image28.PNG
]

(* THE EVENTS GO BELOW *)
e e T e RER S

DEFINE_EVENT

image29.PNG
(FrEE R R R R R)

* *)
(* 1111 WARNING *)
* *)
(* Due to differences in the underlying architecture of the *)
(* X-Series masters, changing variables in the DEFINE_PROGRAM *)
(* section of code can negatively impact program performance. *)
* *)

(* See “Differences in DEFINE_PROGRAN Program Execution” section *)
(* of the NX-Series Controllers WebConsole & Programming Guide *)

(* for additional and alternate coding methodologies. *)
R S S)

DEF INE_PROGRAM

)

(* END OF PROGRAM *)
<* 0
(* 111 DO NOT PUT ANY CODE BELOW THIS COMMENT 11 *)
<* 2

(FFH R R R R R KRR KRR KRR AR KRR KRR R KRR AR AR)

image33.png

image34.png
MetLinx Master
System #1
192 168.12.105

¥

Metlinx Master MetLinx Master
System #2 M System #3

1921681276 19216681293

Metliny Master MetLinx Master
System #106 System #1111
192.168.12.106 1921681211

MetLin Master
System #4
192.168.12.80

image35.png

image36.png
MetLinx Master
System #1
192 168.12.105

¥

Metlinx Master MetLinx Master
System #2 M System #3

1921681276 19216681293

Metliny Master MetLinx Master
System #106 System #1111
192.168.12.106 1921681211

MetLin Master
System #4
192.168.12.80

image1.png
NOTE

image30.png
EHARMAN
PROFESSIONAL UNIVERSITY

image31.jpeg

image32.png
LEGIE

e
e
OF AIMPRL

S

